当前位置:
X-MOL 学术
›
Cement Concrete Comp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Study on the performance of polyester fibers modification system for low carbon magnesium silicate-based cementitious materials
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2025-01-24 , DOI: 10.1016/j.cemconcomp.2025.105948
Yuan Jia, Junwei Zhu, Enci Zhao, Jingxi Zhang, Shibo Li, Yaoting Jiang, Tingting Zhang, Libo Liu
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2025-01-24 , DOI: 10.1016/j.cemconcomp.2025.105948
Yuan Jia, Junwei Zhu, Enci Zhao, Jingxi Zhang, Shibo Li, Yaoting Jiang, Tingting Zhang, Libo Liu
To mitigate the environmental hazards posed by discarded plastics, polyester fibers produced from such waste have been incorporated into building composites. However, the durability of polyester fibers in cementitious environments is compromised by high alkalinity, which may lead to resource wastage. In this study, polyester fibers were embedded in magnesium silicate hydrate to develop a novel, highly reinforced material. The mechanical properties of this composite were investigated through compression tests and four-point bending test, with variations in fiber content and curing periods. Among many organic fibers, polyester fibers are more effective in improving the fracture toughness of the magnesium silicate hydrate system without reducing the compressive strength. Optimal properties were achieved with a fiber content of 1.5%, exhibiting a compressive strength of 44.2 MPa and ultimate bending toughness reaching 5.8 MPa at 28 days. To further investigate the toughening mechanisms, the fiber-matrix interface was characterized using scanning electron microscopy, single fiber pull-out tests, alkali solution immersion, infrared Fourier transform spectroscopy, and nanoindentation tests. Bending toughness test and monofilament drawing test indicate that polyester fibers are more suitable for use in low-alkali hydration magnesium silicate systems compared to traditional portland cement gelling systems. Scanning electron microscopy and nanoindentation analyses showed that polyester fibers exhibit superior bonding properties with magnesium silicate hydrate composites and enhance their ductility. Analysis of alkali solution immersion revealed that polyester fibers are eroded in high alkaline environments, primarily due to hydrolytic degradation of ester bonds on fiber surfaces.
中文翻译:
低碳硅酸镁基胶凝材料聚酯纤维改性体系性能研究
为了减轻废弃塑料对环境的危害,由此类废物生产的聚酯纤维已被纳入建筑复合材料中。然而,聚酯纤维在水泥环境中的耐久性会受到高碱度的影响,这可能导致资源浪费。在这项研究中,将聚酯纤维嵌入硅酸镁水合物中,以开发一种新型的高度增强材料。通过压缩试验和四点弯曲试验研究了这种复合材料的机械性能,纤维含量和固化期发生了变化。在众多有机纤维中,聚酯纤维在不降低抗压强度的情况下,更有效地提高硅酸镁水合物体系的断裂韧性。纤维含量为 1.5% 时实现了最佳性能,在 28 天时表现出 44.2 MPa 的抗压强度和 5.8 MPa 的极限弯曲韧性。为了进一步研究增韧机制,使用扫描电子显微镜、单纤维拉出试验、碱溶液浸泡、红外傅里叶变换光谱和纳米压痕测试对纤维-基体界面进行了表征。弯曲韧性测试和单丝拉丝测试表明,与传统的波特兰水泥胶凝系统相比,聚酯纤维更适合用于低碱水合硅酸镁系统。扫描电子显微镜和纳米压痕分析表明,聚酯纤维与硅酸镁水合物复合材料表现出优异的粘合性能,并增强了其延展性。碱溶液浸泡分析表明,聚酯纤维在高碱性环境中被侵蚀,主要是由于纤维表面酯键的水解降解。
更新日期:2025-01-24
中文翻译:
低碳硅酸镁基胶凝材料聚酯纤维改性体系性能研究
为了减轻废弃塑料对环境的危害,由此类废物生产的聚酯纤维已被纳入建筑复合材料中。然而,聚酯纤维在水泥环境中的耐久性会受到高碱度的影响,这可能导致资源浪费。在这项研究中,将聚酯纤维嵌入硅酸镁水合物中,以开发一种新型的高度增强材料。通过压缩试验和四点弯曲试验研究了这种复合材料的机械性能,纤维含量和固化期发生了变化。在众多有机纤维中,聚酯纤维在不降低抗压强度的情况下,更有效地提高硅酸镁水合物体系的断裂韧性。纤维含量为 1.5% 时实现了最佳性能,在 28 天时表现出 44.2 MPa 的抗压强度和 5.8 MPa 的极限弯曲韧性。为了进一步研究增韧机制,使用扫描电子显微镜、单纤维拉出试验、碱溶液浸泡、红外傅里叶变换光谱和纳米压痕测试对纤维-基体界面进行了表征。弯曲韧性测试和单丝拉丝测试表明,与传统的波特兰水泥胶凝系统相比,聚酯纤维更适合用于低碱水合硅酸镁系统。扫描电子显微镜和纳米压痕分析表明,聚酯纤维与硅酸镁水合物复合材料表现出优异的粘合性能,并增强了其延展性。碱溶液浸泡分析表明,聚酯纤维在高碱性环境中被侵蚀,主要是由于纤维表面酯键的水解降解。