当前位置:
X-MOL 学术
›
Electrochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphene Oxide/Activated Carbon Nano Composite with Hierarchical Pore Structure for Supercapacitor Applications
Electrochimica Acta ( IF 5.5 ) Pub Date : 2025-01-24 , DOI: 10.1016/j.electacta.2025.145752
Mahesh Rathnayake, Hansinee Sitinamaluwa
Electrochimica Acta ( IF 5.5 ) Pub Date : 2025-01-24 , DOI: 10.1016/j.electacta.2025.145752
Mahesh Rathnayake, Hansinee Sitinamaluwa
This study explores the synthesis of high-performance electrode material for supercapacitors through the development of a graphene oxide (GO)/activated carbon (AC) nanocomposite via KOH activation method. Varying ratios of GO:AC were investigated to determine their impact on performance, with an optimal configuration identified at a ratio of 1:3. Incorporating AC particles resulted in a more dispersed arrangement of GO sheets, thereby enhancing structural porosity and achieving an impressive specific surface area of 664.53 m²g-1. The optimized GO:AC composite exhibited a hierarchical porous structure, facilitating enhanced electrode-electrolyte interaction, which is essential for enhanced charge storage capacity in supercapacitors. Supercapacitor electrodes were fabricated using the synthesized GO:AC composite on a Fluorine-doped Tin Oxide (FTO) glass substrate using slurry-coating method. Electrochemical characterization was carried out employing a 3-electrode cell configuration with an Ag/AgCl reference electrode and Pt counter electrode. The nanocomposite with 1:3 GO:AC ratio demonstrated specific capacitance of 5.2341 F/cm2 (Cyclic Voltammetry) and 473.27 F/g (Galvanostatic Cycling) in 1M HCl aqueous solution. The electrode of GO/AC has retained over 73.8% of the initial capacitance after 1000 charge/discharge cycles showing good electrochemical stability. Notably, this synthesis approach offers a straightforward and scalable method for fabricating stable, porous graphene-based electrode architectures, holding significant promise for practical supercapacitor applications.
中文翻译:
用于超级电容器的具有多级孔结构的氧化石墨烯/活性炭纳米复合材料
本研究探讨了通过 KOH 活化法开发氧化石墨烯 (GO)/活性炭 (AC) 纳米复合材料,从而合成用于超级电容器的高性能电极材料。研究了 GO:AC 的不同比率以确定它们对性能的影响,并以 1:3 的比率确定了最佳配置。掺入 AC 颗粒导致 GO 片材的排列更加分散,从而提高了结构孔隙率并实现了令人印象深刻的 664.53 m²g-1 比表面积。优化的 GO:AC 复合材料表现出多级多孔结构,有助于增强电极-电解质相互作用,这对于增强超级电容器的电荷存储容量至关重要。使用浆料涂层方法在氟掺杂氧化锡 (FTO) 玻璃基板上使用合成的 GO:AC 复合材料制造超级电容器电极。采用带有 Ag/AgCl 参比电极和 Pt 对电极的 3 电极电池配置进行电化学表征。具有 1:3 GO:AC 比率的纳米复合材料在 1M HCl 水溶液中的比电容为 5.2341 F/cm2(循环伏安法)和 473.27 F/g(恒电流循环)。GO/AC 电极在 73.8 次充放电循环后仍保留了超过 1000% 的初始电容,显示出良好的电化学稳定性。值得注意的是,这种合成方法为制造稳定的多孔石墨烯基电极结构提供了一种简单且可扩展的方法,为实际超级电容器应用带来了重要前景。
更新日期:2025-01-24
中文翻译:
用于超级电容器的具有多级孔结构的氧化石墨烯/活性炭纳米复合材料
本研究探讨了通过 KOH 活化法开发氧化石墨烯 (GO)/活性炭 (AC) 纳米复合材料,从而合成用于超级电容器的高性能电极材料。研究了 GO:AC 的不同比率以确定它们对性能的影响,并以 1:3 的比率确定了最佳配置。掺入 AC 颗粒导致 GO 片材的排列更加分散,从而提高了结构孔隙率并实现了令人印象深刻的 664.53 m²g-1 比表面积。优化的 GO:AC 复合材料表现出多级多孔结构,有助于增强电极-电解质相互作用,这对于增强超级电容器的电荷存储容量至关重要。使用浆料涂层方法在氟掺杂氧化锡 (FTO) 玻璃基板上使用合成的 GO:AC 复合材料制造超级电容器电极。采用带有 Ag/AgCl 参比电极和 Pt 对电极的 3 电极电池配置进行电化学表征。具有 1:3 GO:AC 比率的纳米复合材料在 1M HCl 水溶液中的比电容为 5.2341 F/cm2(循环伏安法)和 473.27 F/g(恒电流循环)。GO/AC 电极在 73.8 次充放电循环后仍保留了超过 1000% 的初始电容,显示出良好的电化学稳定性。值得注意的是,这种合成方法为制造稳定的多孔石墨烯基电极结构提供了一种简单且可扩展的方法,为实际超级电容器应用带来了重要前景。