当前位置:
X-MOL 学术
›
Electrochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mitigation of capacity decay in vanadium redox flow batteries through initial imbalance of electrolytes state of charge
Electrochimica Acta ( IF 5.5 ) Pub Date : 2025-01-23 , DOI: 10.1016/j.electacta.2025.145750
Marco Cecchetti, Giorgia Nicosia, Andrea Casalegno, Matteo Zago
Electrochimica Acta ( IF 5.5 ) Pub Date : 2025-01-23 , DOI: 10.1016/j.electacta.2025.145750
Marco Cecchetti, Giorgia Nicosia, Andrea Casalegno, Matteo Zago
Capacity decay due to vanadium cross-over is a key technical challenge for Vanadium Redox Flow Batteries (VRFBs). To mitigate this effect this study investigates an operating strategy based on the imbalance of electrolyte solutions State of Charge (SoC). The strategy was conceived starting from the analysis of a VRFB during charge-discharge cycles adopting through-plate Reference Hydrogen Electrodes (RHE), which allowed to continuously monitor the evolution of the electrolytes SoCs during the operation. The obtained information, combined with a modelling analysis to estimate cross-over fluxes and net-vanadium transfer, suggested that starting the operation of the battery with positive electrolyte at a higher SoC compared to the negative one can be an effective strategy. Simulations of battery operation with different initial values of positive electrolyte SoC confirmed that this approach mitigated both battery capacity decay and net vanadium transfer. Model results were then validated by experimental testing. Starting the operation of the battery with negative and positive electrolyte SoC equal to 0 % and 15 % respectively, permitted to increase the discharged energy per cycle by 15 % and to reduce the net vanadium transfer by over 30 % without penalizing the efficiency of the battery.
中文翻译:
通过电解质充电状态的初始不平衡减轻钒氧化还原液流电池的容量衰减
钒交叉引起的容量衰减是钒氧化还原液流电池 (VRFB) 面临的一项关键技术挑战。为了减轻这种影响,本研究研究了一种基于电解质溶液不平衡的操作策略,即充电状态 (SoC)。该策略的构思始于采用通板参考氢电极 (RHE) 在充放电循环期间对 VRFB 的分析,这允许在运行期间持续监测电解质 SoC 的演变。获得的信息,结合估计交叉磁通量和净钒转移的建模分析,表明与负 SoC 相比,在更高的 SoC 下启动具有正电解质的电池运行可能是一种有效的策略。使用不同正电解质 SoC 初始值的电池运行模拟证实,这种方法减轻了电池容量衰减和净钒转移。然后通过实验测试验证模型结果。在负极和正极电解液 SoC 分别等于 0 % 和 15 % 的情况下启动电池运行,允许将每个周期的放电能量增加 15%,并将净钒转移减少 30% 以上,而不会降低电池的效率。
更新日期:2025-01-23
中文翻译:
通过电解质充电状态的初始不平衡减轻钒氧化还原液流电池的容量衰减
钒交叉引起的容量衰减是钒氧化还原液流电池 (VRFB) 面临的一项关键技术挑战。为了减轻这种影响,本研究研究了一种基于电解质溶液不平衡的操作策略,即充电状态 (SoC)。该策略的构思始于采用通板参考氢电极 (RHE) 在充放电循环期间对 VRFB 的分析,这允许在运行期间持续监测电解质 SoC 的演变。获得的信息,结合估计交叉磁通量和净钒转移的建模分析,表明与负 SoC 相比,在更高的 SoC 下启动具有正电解质的电池运行可能是一种有效的策略。使用不同正电解质 SoC 初始值的电池运行模拟证实,这种方法减轻了电池容量衰减和净钒转移。然后通过实验测试验证模型结果。在负极和正极电解液 SoC 分别等于 0 % 和 15 % 的情况下启动电池运行,允许将每个周期的放电能量增加 15%,并将净钒转移减少 30% 以上,而不会降低电池的效率。