当前位置:
X-MOL 学术
›
Coord. Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of chlorine-free electrical double layer for efficient seawater oxidation
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2025-01-21 , DOI: 10.1016/j.ccr.2025.216463
Han-Ming Zhang
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2025-01-21 , DOI: 10.1016/j.ccr.2025.216463
Han-Ming Zhang
Seawater electrolysis is an effective means to solve the problems of transport and consumption of offshore wind electricity. The corrosion reaction and chlorine oxidation reaction caused by the existence of chloride in seawater lead to poor electrochemical performances and low efficiencies for seawater oxidation electrocatalysts. Hence, construction of chlorine-free electrical double layer (EDL) has become one hotspot for efficient seawater oxidation. Based on the theories of interfacial electric field, adsorption selectivity, steric hindrance and electrostatic repulsion, six practical strategies have been well developed to construct the chlorine-free EDL, i.e., high-curvature morphology, hard Lewis acid coating, ploy-homoatomic anion, coordinated common ion, oxyanion, and hard Lewis acid with oxyanion. Great progresses have been made in electrocatalyst stability and reaction selectivity. However, five problems still exist limiting the pullulation of seawater oxidation: (i) the constructed EDL not completely chlorine-free. (ii) too simple condition for EDL simulation, (iii) adverse effects of modification components, (iv) lack of influences of adsorbed oxygen-containing intermediates on electrocatalysts, and (v) ignorance of solvated cations and anions in EDL. Finally, five prospects are proposed to propel the developments of chloride-free EDL and seawater electrolysis: (i) combination of multiple strategies for chlorine-free EDL construction, (ii) investigation of dynamical EDL structures by time-responsive information of electrocatalysts and electrolysis interfaces, (iii) precise control of modification components by subtle electrocatalyst preparation and appropriate electrolyte additive, (iv) encompassing oxygen-containing intermediates, and (v) involvement of solvated cations and anions in the simulated EDL. Besides, the understanding of EDL would be deeper, promoting its wide application in the fields of information, energy conversion and storage.
中文翻译:
无氯双电层结构,实现高效海水氧化
海水电解是解决海上风电运输和消纳问题的有效手段。海水中氯化物的存在引起的腐蚀反应和氯氧化反应导致海水氧化电催化剂的电化学性能差,效率低下。因此,构建无氯双电层 (EDL) 已成为高效海水氧化的热点之一。基于界面电场、吸附选择性、空间位阻和静电排斥理论,构建无氯EDL的6种实用策略已经得到很好的发展,即高曲率形态、硬路易斯酸涂层、波利同原子阴离子、配位共离子、氧阴离子和硬路易斯酸与氧阴离子。在电催化剂稳定性和反应选择性方面取得了重大进展。然而,仍然存在五个限制海水氧化拉的问题:(i) 构建的 EDL 并非完全不含氯。(ii) EDL 模拟的条件太简单,(iii) 改性组分的不利影响,(iv) 缺乏吸附的含氧中间体对电催化剂的影响,以及 (v) 对 EDL 中溶剂化阳离子和阴离子的无知。 最后,提出了推动无氯 EDL 和海水电解发展的五大前景:(i) 无氯 EDL 构建的多种策略的组合,(ii) 通过电催化剂和电解界面的时间响应信息研究动态 EDL 结构,(iii) 通过微妙的电催化剂制备和适当的电解质添加剂精确控制改性组分,(iv) 包含含氧中间体, (v) 溶剂化阳离子和阴离子参与模拟的 EDL。此外,对 EDL 的理解将更加深入,促进其在信息、能源转换和存储领域的广泛应用。
更新日期:2025-01-21
中文翻译:
无氯双电层结构,实现高效海水氧化
海水电解是解决海上风电运输和消纳问题的有效手段。海水中氯化物的存在引起的腐蚀反应和氯氧化反应导致海水氧化电催化剂的电化学性能差,效率低下。因此,构建无氯双电层 (EDL) 已成为高效海水氧化的热点之一。基于界面电场、吸附选择性、空间位阻和静电排斥理论,构建无氯EDL的6种实用策略已经得到很好的发展,即高曲率形态、硬路易斯酸涂层、波利同原子阴离子、配位共离子、氧阴离子和硬路易斯酸与氧阴离子。在电催化剂稳定性和反应选择性方面取得了重大进展。然而,仍然存在五个限制海水氧化拉的问题:(i) 构建的 EDL 并非完全不含氯。(ii) EDL 模拟的条件太简单,(iii) 改性组分的不利影响,(iv) 缺乏吸附的含氧中间体对电催化剂的影响,以及 (v) 对 EDL 中溶剂化阳离子和阴离子的无知。 最后,提出了推动无氯 EDL 和海水电解发展的五大前景:(i) 无氯 EDL 构建的多种策略的组合,(ii) 通过电催化剂和电解界面的时间响应信息研究动态 EDL 结构,(iii) 通过微妙的电催化剂制备和适当的电解质添加剂精确控制改性组分,(iv) 包含含氧中间体, (v) 溶剂化阳离子和阴离子参与模拟的 EDL。此外,对 EDL 的理解将更加深入,促进其在信息、能源转换和存储领域的广泛应用。