当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal stress distribution characteristics in high geothermal tunnel
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2025-01-10 , DOI: 10.1016/j.tust.2024.106346
Pingye Guo, Xin Jin, Mohua Bu, Manchao He
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2025-01-10 , DOI: 10.1016/j.tust.2024.106346
Pingye Guo, Xin Jin, Mohua Bu, Manchao He
The deep-buried tunnel has developed rapidly and vigorously in the last decade, and it is essential to address thermal stress issues induced by high geothermal. The temperature differences between the low-temperature tunnel’s inner surface caused by ventilation and the high-temperature initial rock lead to thermal stress, further significantly changing stress distribution characteristics in high geothermal tunnels. In this paper, the tunnel’s thermal stress theoretical model is derived based on the basic assumption of elasticity and verified using the field data. Thermal stress shows tension on the tunnel’s inner surface at circumferential and axial. On the contrary, compression at the position of the heat-regulating circle. Then, the thermal stress distribution characteristics and effects factors are analyzed. Higher initial rock or lower air temperatures increased tension stress on the tunnel’s inner surface and compression stress at the position of the heat-regulating circle for circumferential and axial, but did not change the transition point between tension and compression stress. The heat-regulating circle and tunnel radius almost do not change the thermal stress at the engineering scale, but significantly affect the transition point. Reducing both brings the transition point closer to the tunnel’s inner surface. Increasing the tunnel radius, rock’s heat conduction, initial rock temperature, and the decrease of air temperature or the convective heat transfer coefficient of the tunnel’s inner surface will enlarge the heat-regulating circle radius. Finally, the stress-checking diagram is provided based on the theoretical model. The parameters required for the stress-checking diagram can be obtained by geological exploration and laboratory experiments before tunnel excavation. The stress-checking diagram can judge the failure’s location, angle, and type. The area of the compression dangerous zone in the stress-checking diagram can be reduced by increasing the strength of the support structures, while the tension dangerous zone can only escape by adjusting the temperature of the tunnel’s inner surface. The research results are expected to provide a theoretical basis for designing and checking tunnel engineering involving high-temperature differences.
中文翻译:
高地热隧道中的热应力分布特性
深埋隧道在过去十年中发展迅速而积极,解决高地热引起的热应力问题至关重要。通风引起的低温隧道内表面与高温初始岩石之间的温差导致热应力,进一步显著改变了高地热隧道的应力分布特性。本文基于弹性的基本假设推导了隧道的热应力理论模型,并利用现场数据进行了验证。热应力表示隧道内表面在圆周和轴向的张力。相反,在热调节圈的位置受到压缩。然后,分析了热应力分布特征和影响因素。较高的初始岩石温度或较低的空气温度增加了隧道内表面的拉应力和圆周和轴向调热圈位置的压缩应力,但没有改变拉应力和压缩应力之间的过渡点。在工程尺度上,调热圆和隧道半径几乎不改变热应力,但对转变点有显著影响。减少两者会使过渡点更接近隧道的内表面。隧道半径、岩石的热传导、初始岩石温度以及空气温度或隧道内表面对流传热系数的降低都会扩大调热圆半径。最后,基于理论模型给出了压力检查图。 应力检查图所需的参数可以通过隧道开挖前的地质勘探和室内实验获得。压力检查图可以判断故障的位置、角度和类型。应力检查图中压缩危险区的面积可以通过增加支撑结构的强度来减小,而张拉危险区只能通过调整隧道内表面的温度来逃脱。研究结果有望为涉及高温差的隧道工程设计和校核提供理论依据。
更新日期:2025-01-10
中文翻译:

高地热隧道中的热应力分布特性
深埋隧道在过去十年中发展迅速而积极,解决高地热引起的热应力问题至关重要。通风引起的低温隧道内表面与高温初始岩石之间的温差导致热应力,进一步显著改变了高地热隧道的应力分布特性。本文基于弹性的基本假设推导了隧道的热应力理论模型,并利用现场数据进行了验证。热应力表示隧道内表面在圆周和轴向的张力。相反,在热调节圈的位置受到压缩。然后,分析了热应力分布特征和影响因素。较高的初始岩石温度或较低的空气温度增加了隧道内表面的拉应力和圆周和轴向调热圈位置的压缩应力,但没有改变拉应力和压缩应力之间的过渡点。在工程尺度上,调热圆和隧道半径几乎不改变热应力,但对转变点有显著影响。减少两者会使过渡点更接近隧道的内表面。隧道半径、岩石的热传导、初始岩石温度以及空气温度或隧道内表面对流传热系数的降低都会扩大调热圆半径。最后,基于理论模型给出了压力检查图。 应力检查图所需的参数可以通过隧道开挖前的地质勘探和室内实验获得。压力检查图可以判断故障的位置、角度和类型。应力检查图中压缩危险区的面积可以通过增加支撑结构的强度来减小,而张拉危险区只能通过调整隧道内表面的温度来逃脱。研究结果有望为涉及高温差的隧道工程设计和校核提供理论依据。