当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structural design and optimization of adaptive soft adhesion bionic climbing robot
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-16 , DOI: 10.1016/j.autcon.2025.105975
Huaixin Chen, Quansheng Jiang, Zihan Zhang, Shilei Wu, Yehu Shen, Fengyu Xu
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-16 , DOI: 10.1016/j.autcon.2025.105975
Huaixin Chen, Quansheng Jiang, Zihan Zhang, Shilei Wu, Yehu Shen, Fengyu Xu
Soft-body climbing robots can automatically adapt to the external shape of the climbing surface, but their load-carrying capacity and output torque are insufficient. To address this problem, a bionic climbing robot that can adapt to different complex climbing surfaces as well as a high load-bearing capacity is designed. The proposed robot consists of three bionic crab-pincer gripping structures and two retractable torsos, and its gripping action is achieved by cable-driven. The mechanical models of the cable-driven and rotatable joints were established, and the relationship between motor input torque and end force was determined. The experimental results show that the climbing robot designed in this paper exhibits strong adaptivity on a variety of different materials and different shapes of climbing surfaces, and has strong climbing stability. Its maximum pipe climbing diameter is 290 mm, and the maximum load capacity is 10.5 kg.
中文翻译:
自适应软粘接仿生攀爬机器人的结构设计与优化
软体攀爬机器人可以自动适应攀爬面的外部形状,但其承载能力和输出扭矩不足。针对这一问题,设计了一种能够适应不同复杂攀爬表面且承载能力高的仿生攀爬机器人。拟议的机器人由三个仿生螃蟹钳抓取结构和两个可伸缩躯干组成,其抓取动作是通过电缆驱动实现的。建立了拉索驱动和可旋转接头的力学模型,确定了电机输入扭矩与末端力之间的关系。实验结果表明,本文设计的攀爬机器人在多种不同材料和不同形状的攀爬表面表现出较强的适应性,具有较强的攀爬稳定性。其最大爬管直径为 290 毫米,最大负载能力为 10.5 公斤。
更新日期:2025-01-16
中文翻译:

自适应软粘接仿生攀爬机器人的结构设计与优化
软体攀爬机器人可以自动适应攀爬面的外部形状,但其承载能力和输出扭矩不足。针对这一问题,设计了一种能够适应不同复杂攀爬表面且承载能力高的仿生攀爬机器人。拟议的机器人由三个仿生螃蟹钳抓取结构和两个可伸缩躯干组成,其抓取动作是通过电缆驱动实现的。建立了拉索驱动和可旋转接头的力学模型,确定了电机输入扭矩与末端力之间的关系。实验结果表明,本文设计的攀爬机器人在多种不同材料和不同形状的攀爬表面表现出较强的适应性,具有较强的攀爬稳定性。其最大爬管直径为 290 毫米,最大负载能力为 10.5 公斤。