当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deep learning without human labeling for on-site rebar instance segmentation using synthetic BIM data and domain adaptation
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-13 , DOI: 10.1016/j.autcon.2024.105953
Tsung-Wei Huang, Yi-Hsiang Chen, Jacob J. Lin, Chuin-Shan Chen
Automation in Construction ( IF 9.6 ) Pub Date : 2025-01-13 , DOI: 10.1016/j.autcon.2024.105953
Tsung-Wei Huang, Yi-Hsiang Chen, Jacob J. Lin, Chuin-Shan Chen
On-site rebar inspection is crucial for structural safety but remains labor-intensive and time-consuming. While deep learning presents a promising solution, existing research often relies on limited real-world labeled data. This paper introduces a framework to train a deep learning model for on-site rebar instance segmentation without human labeling. Synthetic data are generated from BIM models, creating a Synthetic On-site Rebar Dataset (SORD) with 25,287 labeled images. Domain adaptation is incorporated to bridge the gap between synthetic and real-world non-labeled data. This approach eliminates the need for human labeling. It significantly enhances model performance, achieving a threefold improvement in Average Precision (AP) metrics compared to models trained on limited real-world data. Additionally, the proposed method demonstrates superior performance across various on-site rebar images collected online, underscoring its generalizability and practical applications.
中文翻译:
无需人工标记的深度学习,使用合成 BIM 数据和域适应进行现场钢筋实例分割
现场钢筋检查对于结构安全至关重要,但仍然需要大量人力且耗时。虽然深度学习提供了一个有前途的解决方案,但现有研究通常依赖于有限的真实世界标记数据。本文介绍了一个框架,用于训练深度学习模型,用于现场钢筋实例分割,而无需人工标记。合成数据从 BIM 模型生成,创建具有 25,287 个标记图像的综合现场钢筋数据集 (SORD)。整合了域适应以弥合合成数据和真实世界非标记数据之间的差距。这种方法消除了人工标记的需要。它显著提高了模型性能,与使用有限的真实数据训练的模型相比,平均精度 (AP) 指标提高了三倍。此外,所提出的方法在网上收集的各种现场钢筋图像中表现出卓越的性能,强调了其通用性和实际应用。
更新日期:2025-01-13
中文翻译:

无需人工标记的深度学习,使用合成 BIM 数据和域适应进行现场钢筋实例分割
现场钢筋检查对于结构安全至关重要,但仍然需要大量人力且耗时。虽然深度学习提供了一个有前途的解决方案,但现有研究通常依赖于有限的真实世界标记数据。本文介绍了一个框架,用于训练深度学习模型,用于现场钢筋实例分割,而无需人工标记。合成数据从 BIM 模型生成,创建具有 25,287 个标记图像的综合现场钢筋数据集 (SORD)。整合了域适应以弥合合成数据和真实世界非标记数据之间的差距。这种方法消除了人工标记的需要。它显著提高了模型性能,与使用有限的真实数据训练的模型相比,平均精度 (AP) 指标提高了三倍。此外,所提出的方法在网上收集的各种现场钢筋图像中表现出卓越的性能,强调了其通用性和实际应用。