当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complex deformation behavior of a partially recrystallized metastable medium-entropy alloy: In-situ synchrotron X-ray diffraction study
Acta Materialia ( IF 8.3 ) Pub Date : 2025-01-16 , DOI: 10.1016/j.actamat.2025.120757
Jae Heung Lee, Hyeonseok Kwon, Gang Hee Gu, Ji Yeong Lee, Sang Guk Jeong, Emad Maawad, Changwan Ha, Jae Bok Seol, Sun Ig Hong, Sangbong Yi, Hyoung Seop Kim

Ferrous medium-entropy alloys (FeMEAs), leveraging deformation-induced martensitic transformation (DIMT), demonstrate excellent strain-hardening ability attributed to the transformation-induced plasticity (TRIP) effect. To improve the low yield strength of FeMEAs, the initial microstructure was controlled by utilizing partial recrystallization. The intricate initial microstructure, a blend of recrystallized (ReX) and non-recrystallized (non-ReX) regions, results in complex deformation behavior where DIMT in both the ReX and non-ReX regions are simultaneously activated, posing significant analytical challenges. In this paper, we perform in-situ synchrotron X-ray diffraction during the tensile loading on a partially recrystallized metastable Fe57.5Co18Cr13Ni7.5Mo3C1 (at%) FeMEA to quantitatively analyze each deformation mechanism. The innovative idea of peak deconvolution enables separate tracing of the deformation behavior of the ReX and non-ReX FCC domains, revealing the stress partitioning between them. DIMT kinetics in each domain are investigated by the evolution of domain fractions, and we provide a detailed discussion on how both of them exhibit rapid DIMT kinetics. Furthermore, we measure the contributions of DIMT occurring in each domain on the global strain-hardening rate. The results suggest that the predominant contribution shifts from DIMT in the ReX domain to DIMT in the non-ReX domain as deformation progresses, highlighting the distinctive strain-hardening mechanisms between the ReX and non-ReX domains. This work demonstrates how a partially recrystallized metastable FeMEA exhibits superior mechanical properties and provides insights into analyzing the complex deformation behavior.

中文翻译:


部分再结晶的亚稳态中等熵合金的复杂变形行为:原位同步辐射 X 射线衍射研究



铁介质熵合金 (FeMEA) 利用变形诱导马氏体转变 (DIMT),由于转变诱导塑性 (TRIP) 效应而表现出优异的应变硬化能力。为了提高 FeMEAs 的低屈服强度,通过利用部分再结晶来控制初始微观结构。错综复杂的初始微观结构,即再结晶 (ReX) 和非再结晶 (non-ReX) 区域的混合物,导致复杂的变形行为,其中 ReX 和非 ReX 区域的 DIMT 同时被激活,带来了重大的分析挑战。在本文中,我们在部分再结晶的亚稳态 Fe57.5Co18Cr13Ni7.5Mo3C1 (at%) FeMEA 上进行原位同步加速器 X 射线衍射,以定量分析每种变形机制。峰值反卷积的创新理念能够单独追踪 ReX 和非 ReX FCC 域的变形行为,从而揭示它们之间的应力分配。通过结构域分数的演变来研究每个结构域中的 DIMT 动力学,我们详细讨论了它们如何表现出快速的 DIMT 动力学。此外,我们测量了每个域中发生的 DIMT 对整体应变硬化率的贡献。结果表明,随着变形的进行,主要贡献从 ReX 域中的 DIMT 转移到非 ReX 域中的 DIMT,突出了 ReX 和非 ReX 域之间独特的应变硬化机制。这项工作展示了部分重结晶的亚稳态 FeMEA 如何表现出卓越的机械性能,并为分析复杂的变形行为提供了见解。
更新日期:2025-01-16
down
wechat
bug