当前位置: X-MOL 学术Combinatorica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing New Geometries: A Generalized Approach to Halving for Hypertopes
Combinatorica ( IF 1.0 ) Pub Date : 2025-01-16 , DOI: 10.1007/s00493-024-00134-y
Claudio Alexandre Piedade , Philippe Tranchida

Given a residually connected incidence geometry \(\Gamma \) that satisfies two conditions, denoted \((B_1)\) and \((B_2)\), we construct a new geometry \(H(\Gamma )\) with properties similar to those of \(\Gamma \). This new geometry \(H(\Gamma )\) is inspired by a construction of Lefèvre-Percsy, Percsy and Leemans (Bull Belg Math Soc Simon Stevin 7(4):583–610, 2000). We show how \(H(\Gamma )\) relates to the classical halving operation on polytopes, allowing us to generalize the halving operation to a broader class of geometries, that we call non-degenerate leaf hypertopes. Finally, we apply this generalization to cubic toroids in order to generate new examples of regular hypertopes.



中文翻译:


构建新的几何结构:超位面减半的广义方法



给定一个满足 \((B_1)\)\((B_2)\) 两个条件的残差连接入射几何 \(\Gamma )\),我们构建一个新的几何 \(H(\Gamma )\),其属性类似于 \(\Gamma \) 的几何。这种新的几何 \(H(\Gamma )\) 的灵感来自于 Lefèvre-Percsy、Percsy 和 Leemans 的结构 (Bull Belg Math Soc Simon Stevin 7(4):583–610, 2000)。我们展示了 \(H(\Gamma )\) 与多面体的经典减半运算的关系,使我们能够将减半运算推广到更广泛的几何类别,我们称之为非简并叶片超位。最后,我们将这种泛化应用于三次环形线圈,以生成规则超位的新示例。

更新日期:2025-01-16
down
wechat
bug