当前位置:
X-MOL 学术
›
Pest Manag. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Resistance reduction and cross‐resistance of spinosad‐resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and the association between spinosad resistance and maltase activity
Pest Management Science ( IF 3.8 ) Pub Date : 2025-01-11 , DOI: 10.1002/ps.8650
Yi‐Chun Wang, Yun‐Chuang Chen, Chi‐Yuan Chen, Mei‐Er Chen
Pest Management Science ( IF 3.8 ) Pub Date : 2025-01-11 , DOI: 10.1002/ps.8650
Yi‐Chun Wang, Yun‐Chuang Chen, Chi‐Yuan Chen, Mei‐Er Chen
BACKGROUNDThe lesser grain borer, Rhyzopertha dominica , is a serious stored‐products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management. Given the structural similarity of spinosad and maltose, both containing a neutral sugar structure, it was hypothesized that maltase may hydrolyze spinosad, rendering R. dominica resistant to spinosad. In this study, multiple spinosad‐resistant strains (RdSR) were used to test the hypothesis.RESULTSThe resistance reduction examination of a spinosad‐resistant strain RdSR‐1 showed a significant decrease in resistance level over 1 year with the LC50 decreasing from 2.996 to 0.392 mg kg−1 indicating an 86.92% reduction. Cross‐resistance investigations using the resistant strain RdSR‐2 revealed a correlation between spinosad and spinetoram, while no such cross‐resistance was observed with other insecticides. The expression levels of four maltase genes were significantly higher in the resistant strain RdSR‐1 than the susceptible one. Furthermore, 3,5‐Dinitrosalicylic acid (DNS) assays suggested increased spinosad hydrolysis in the resistant strain RdSR‐3 compared to the susceptible one. The maltase inhibitor, acarbose, was applied to susceptible R. dominica , resulting in a significant increase in mortality among individuals exposed to both acarbose and spinosad. These findings imply that acarbose can synergize the efficacy of spinosad in R. dominica .CONCLUSIONThe study suggests maltase as a potential resistance mechanism in R. dominica against spinosad. This novel mechanism combined with reduction and cross‐resistance results provide valuable insights for control strategy development. © 2025 Society of Chemical Industry.
中文翻译:
多杀菌素抗性 Rhyzopertha dominica(鞘翅目:Bostrichidae)的抗性降低和交叉抗性以及多杀菌素抗性与麦芽糖酶活性之间的关联
背景小粒螟 Rhyzopertha dominica 是一种严重的储存产品害虫,主要由杀虫剂控制。Spinosad 是一种对哺乳动物毒性低的环保型生物杀虫剂,被认为是多米尼加红霉管理的合适候选者。鉴于多杀菌素和麦芽糖的结构相似性,两者都含有中性糖结构,据推测麦芽糖酶可能会水解多杀菌素,使多米尼加红葡萄对多杀菌素产生抗性。在这项研究中,使用多种多杀菌素耐药菌株 (RdSR) 来检验该假设。结果多杀菌素抗性菌株 RdSR-1 的抗性降低检查显示,抗性水平在 1 年内显着降低,LC50 从 2.996 降至 0.392 mg kg-1,表明降低 86.92%。使用抗性菌株 RdSR-2 的交叉耐药性研究揭示了多杀菌素和 Spinetoram 之间的相关性,而其他杀虫剂没有观察到这种交叉耐药性。抗性菌株 RdSR-1 中 4 个麦芽糖酶基因的表达水平显著高于感病菌株。此外,3,5-二硝基水杨酸 (DNS) 测定表明,与易感菌株相比,抗性菌株 RdSR-3 中的多杀菌素水解增加。将麦芽糖酶抑制剂阿卡波糖应用于易感的多米尼克红霉,导致暴露于阿卡波糖和多杀菌素的个体死亡率显着增加。这些发现意味着阿卡波糖可以协同多杀菌素对多米尼加的疗效。结论该研究表明麦芽糖酶是多米尼加红葡萄对多杀菌素的潜在耐药机制。这种新颖的机制与还原和交叉耐药结果相结合,为控制策略的开发提供了有价值的见解。 © 2025 化工学会.
更新日期:2025-01-11
中文翻译:
多杀菌素抗性 Rhyzopertha dominica(鞘翅目:Bostrichidae)的抗性降低和交叉抗性以及多杀菌素抗性与麦芽糖酶活性之间的关联
背景小粒螟 Rhyzopertha dominica 是一种严重的储存产品害虫,主要由杀虫剂控制。Spinosad 是一种对哺乳动物毒性低的环保型生物杀虫剂,被认为是多米尼加红霉管理的合适候选者。鉴于多杀菌素和麦芽糖的结构相似性,两者都含有中性糖结构,据推测麦芽糖酶可能会水解多杀菌素,使多米尼加红葡萄对多杀菌素产生抗性。在这项研究中,使用多种多杀菌素耐药菌株 (RdSR) 来检验该假设。结果多杀菌素抗性菌株 RdSR-1 的抗性降低检查显示,抗性水平在 1 年内显着降低,LC50 从 2.996 降至 0.392 mg kg-1,表明降低 86.92%。使用抗性菌株 RdSR-2 的交叉耐药性研究揭示了多杀菌素和 Spinetoram 之间的相关性,而其他杀虫剂没有观察到这种交叉耐药性。抗性菌株 RdSR-1 中 4 个麦芽糖酶基因的表达水平显著高于感病菌株。此外,3,5-二硝基水杨酸 (DNS) 测定表明,与易感菌株相比,抗性菌株 RdSR-3 中的多杀菌素水解增加。将麦芽糖酶抑制剂阿卡波糖应用于易感的多米尼克红霉,导致暴露于阿卡波糖和多杀菌素的个体死亡率显着增加。这些发现意味着阿卡波糖可以协同多杀菌素对多米尼加的疗效。结论该研究表明麦芽糖酶是多米尼加红葡萄对多杀菌素的潜在耐药机制。这种新颖的机制与还原和交叉耐药结果相结合,为控制策略的开发提供了有价值的见解。 © 2025 化工学会.