当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evolution law and calculation model of closure time in artificial ground freezing
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2025-01-10 , DOI: 10.1016/j.tust.2024.106358
Xu Li, Shuang Liu, Xiao-kang Li, Zu-run Yue
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2025-01-10 , DOI: 10.1016/j.tust.2024.106358
Xu Li, Shuang Liu, Xiao-kang Li, Zu-run Yue
Artificial ground freezing (AGF) is a widely utilized underground support method, with the closure time (t c ) of frozen wall being one of the primary concerns. However, the multiple environmental and engineering factors result in complex evolution law and insufficient calculation model of t c . This study conducts a numerical orthogonal test on t c considering eight physical factors, including seepage velocity, pipe space, freeze temperature, environmental temperature, tunnel diameter, soil thermal conductivity, soil heat capacity and saturated water content. Subsequently, a comprehensive t c calculation model incorporating the above factors is proposed based on test results. The results show that seepage velocity and pipe space are two primary factors affecting t c, with a contribution rate of 33% and 29%, and the rest are secondary factors. Furthermore, a basic t c calculation model considering two primary factors is proposed, providing a practical selection table in AGF design. In addition, the six secondary factors can be normalized into two physically introduced parameters: heat transfer efficiency and cooling demand, which are solely related to t c , yielding a comprehensive t c model involving eight factors. The proposed comprehensive t c model is applicable in multiple scales and engineering cases. This study can provide a reference for AGF design in complex underground conditions.
中文翻译:
人工地面冻结中闭合时间的演化规律及计算模型
人工地层冻结 (AGF) 是一种广泛使用的地下支护方法,冻结墙的闭合时间 (tc) 是主要关注点之一。然而,多重环境和工程因素导致演化规律复杂,tc 计算模型不足。本研究考虑了渗流速度、管道间距、冻结温度、环境温度、隧道直径、土壤导热系数、土壤热容和饱和含水率等 8 个物理因素,对 tc 进行了数值正交试验。随后,根据测试结果提出了一个综合考虑上述因素的 tc 计算模型。结果表明:渗流速度和管间距是影响 tc 的 2 个主要因素,贡献率分别为 33% 和 29%,其余为次要因素。此外,提出了一种考虑两个主要因素的基本 tc 计算模型,为 AGF 设计提供了一个实用的选择表。此外,这 6 个次要因素可以归一化为两个物理引入的参数:传热效率和冷却需求,它们仅与 tc 相关,从而产生一个涉及 8 个因素的综合 tc 模型。所提出的综合 tc 模型适用于多尺度和工程案例。该研究可为复杂地下条件下的 AGF 设计提供参考。
更新日期:2025-01-10
中文翻译:

人工地面冻结中闭合时间的演化规律及计算模型
人工地层冻结 (AGF) 是一种广泛使用的地下支护方法,冻结墙的闭合时间 (tc) 是主要关注点之一。然而,多重环境和工程因素导致演化规律复杂,tc 计算模型不足。本研究考虑了渗流速度、管道间距、冻结温度、环境温度、隧道直径、土壤导热系数、土壤热容和饱和含水率等 8 个物理因素,对 tc 进行了数值正交试验。随后,根据测试结果提出了一个综合考虑上述因素的 tc 计算模型。结果表明:渗流速度和管间距是影响 tc 的 2 个主要因素,贡献率分别为 33% 和 29%,其余为次要因素。此外,提出了一种考虑两个主要因素的基本 tc 计算模型,为 AGF 设计提供了一个实用的选择表。此外,这 6 个次要因素可以归一化为两个物理引入的参数:传热效率和冷却需求,它们仅与 tc 相关,从而产生一个涉及 8 个因素的综合 tc 模型。所提出的综合 tc 模型适用于多尺度和工程案例。该研究可为复杂地下条件下的 AGF 设计提供参考。