当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cross-Scale Catalyst Modeling Applied to H2 Storage and Release via Formic Acid
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-09 , DOI: 10.1021/acs.iecr.4c03344 Shyam Deo, Wenyu Sun, Tanusree Chatterjee, Thomas Moore, Mengyao Yuan, Matthew J. Mcnenly, Sneha A. Akhade, Giovanna Bucci
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-09 , DOI: 10.1021/acs.iecr.4c03344 Shyam Deo, Wenyu Sun, Tanusree Chatterjee, Thomas Moore, Mengyao Yuan, Matthew J. Mcnenly, Sneha A. Akhade, Giovanna Bucci
We propose the Systems-to-Atoms (S2A) modeling framework that integrates the kinetics of reaction chemistry and structural configurations across various length scales with the aim of establishing a versatile template for multiscale modeling of reactive flow problems and to predict the operando activity of catalyst materials. The approach encompasses a microkinetic model to analyze surface reactions on individual facets of catalyst nanoparticles coupled with the computation of average surface reaction rates for catalyst nanoparticles of specific size distributions. Macro-homogeneous surface reaction kinetics are derived as a function of catalyst loading and used as input parameters for the continuum-scale reactor model. The cross-scale framework enables the optimization of catalyst utilization through reactor design and operating strategy. To demonstrate the framework, we studied the storage and release of hydrogen from formic acid, a promising liquid organic hydrogen carrier (LOHC), over Pd, Pt, and Cu catalysts. The framework predicts observed trends in formic acid dehydrogenation activity for catalysts with comparable weight loadings and metal particle diameters, demonstrating satisfactory quantitative alignment. Finally, the seamless transmission of parameter uncertainties between scales is also discussed.
中文翻译:
应用于甲酸 H2 储存和释放的跨尺度催化剂建模
我们提出了系统到原子 (S2A) 建模框架,该框架集成了各种长度尺度的反应化学动力学和结构构型,目的是为反应流问题的多尺度建模和预测催化剂材料的原位活性建立一个多功能模板。该方法包括一个微动力学模型,用于分析催化剂纳米颗粒各个方面的表面反应,并计算特定尺寸分布的催化剂纳米颗粒的平均表面反应速率。宏观均一表面反应动力学是作为催化剂负载的函数推导的,并用作连续尺度反应器模型的输入参数。跨规模框架可通过反应器设计和操作策略优化催化剂利用率。为了证明该框架,我们研究了甲酸(一种很有前途的液态有机氢载体 (LOHC))在 Pd、Pt 和 Cu 催化剂上的氢的储存和释放。该框架预测了具有可比重量负载量和金属颗粒直径的催化剂的甲酸脱氢活性的观察趋势,证明了令人满意的定量对准。最后,还讨论了尺度之间参数不确定性的无缝传输。
更新日期:2025-01-09
中文翻译:
应用于甲酸 H2 储存和释放的跨尺度催化剂建模
我们提出了系统到原子 (S2A) 建模框架,该框架集成了各种长度尺度的反应化学动力学和结构构型,目的是为反应流问题的多尺度建模和预测催化剂材料的原位活性建立一个多功能模板。该方法包括一个微动力学模型,用于分析催化剂纳米颗粒各个方面的表面反应,并计算特定尺寸分布的催化剂纳米颗粒的平均表面反应速率。宏观均一表面反应动力学是作为催化剂负载的函数推导的,并用作连续尺度反应器模型的输入参数。跨规模框架可通过反应器设计和操作策略优化催化剂利用率。为了证明该框架,我们研究了甲酸(一种很有前途的液态有机氢载体 (LOHC))在 Pd、Pt 和 Cu 催化剂上的氢的储存和释放。该框架预测了具有可比重量负载量和金属颗粒直径的催化剂的甲酸脱氢活性的观察趋势,证明了令人满意的定量对准。最后,还讨论了尺度之间参数不确定性的无缝传输。