当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ordered Mesoporous Multishell Composite Microspheres with Controlled Loading of Magnetic Particles for Enhanced Electromagnetic Wave Absorption Performance
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-09 , DOI: 10.1021/acs.iecr.4c04325 Zeyu Liu, Qingyan Li, Kehan Zhao, Shipeng Wang, Mudasir Ahmad, Lei Zhang, Baoliang Zhang
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-09 , DOI: 10.1021/acs.iecr.4c04325 Zeyu Liu, Qingyan Li, Kehan Zhao, Shipeng Wang, Mudasir Ahmad, Lei Zhang, Baoliang Zhang
Precise construction of rational structures and optimization of material components are the main strategies for the design and preparation of novel high-performance electromagnetic wave (EMW) absorbers. Here, SiO2/RF@m-PDA multishell composite microspheres with an ordered mesoporous structure are produced by a two-step reaction of simultaneous hydrolysis precipitation polymerization and dopamine self-polymerization with a soft stencil method. The microspheres are monodisperse with an average particle size of 380 nm. Then magnetic Co nanoparticles are embedded inside the mesoporous pores using an impregnation reduction method, which allows the preparation of SiO2/C/NC-Co composite EMW absorbers with different magnetic component loadings. The effective absorption bandwidth of SiO2/C/NC-Co-2 reaches 7.36 GHz at a thickness of 2.2 mm, and the minimum reflection loss reaches −46.59 dB by adjusting the filling load of the EMW absorber. The excellent electromagnetic wave absorbing performance is attributed to the dual loss mechanism and synergistic effect of the magnetic/dielectric and the abundant heterogeneous interfaces given by the multishell layer and mesoporous structure. This study provides a feasible method to prepare complex structures with multicomponent doped magnetic composite EMW absorbers.
中文翻译:
具有受控磁粒子负载的有序介孔多壳复合微球,可增强电磁波吸收性能
合理结构的精确构建和材料成分的优化是设计和制备新型高性能电磁波 (EMW) 吸收器的主要策略。在这里,采用软模板法同时水解沉淀聚合和多巴胺自聚合的两步反应,生产出具有有序介孔结构的 SiO2/RF@m-PDA 多壳复合微球。微球是单分散的,平均粒径为 380 nm。然后,使用浸渍还原法将磁性 Co 纳米颗粒嵌入介孔内,从而可以制备具有不同磁性成分负载的 SiO2/C/NC-Co 复合 EMW 吸收材料。SiO2/C/NC-Co-2 的有效吸收带宽在 2.2 mm 的厚度下达到 7.36 GHz,通过调整 EMW 吸收体的填充载荷,最小反射损耗达到 −46.59 dB。优异的电磁波吸收性能归因于磁性/电介质的双重损耗机制和协同效应,以及多壳层和介孔结构赋予的丰富的异质界面。本研究提供了一种用多组分掺杂磁性复合 EMW 吸收材料制备复杂结构的可行方法。
更新日期:2025-01-09
中文翻译:
具有受控磁粒子负载的有序介孔多壳复合微球,可增强电磁波吸收性能
合理结构的精确构建和材料成分的优化是设计和制备新型高性能电磁波 (EMW) 吸收器的主要策略。在这里,采用软模板法同时水解沉淀聚合和多巴胺自聚合的两步反应,生产出具有有序介孔结构的 SiO2/RF@m-PDA 多壳复合微球。微球是单分散的,平均粒径为 380 nm。然后,使用浸渍还原法将磁性 Co 纳米颗粒嵌入介孔内,从而可以制备具有不同磁性成分负载的 SiO2/C/NC-Co 复合 EMW 吸收材料。SiO2/C/NC-Co-2 的有效吸收带宽在 2.2 mm 的厚度下达到 7.36 GHz,通过调整 EMW 吸收体的填充载荷,最小反射损耗达到 −46.59 dB。优异的电磁波吸收性能归因于磁性/电介质的双重损耗机制和协同效应,以及多壳层和介孔结构赋予的丰富的异质界面。本研究提供了一种用多组分掺杂磁性复合 EMW 吸收材料制备复杂结构的可行方法。