Nature Electronics ( IF 33.7 ) Pub Date : 2025-01-08 , DOI: 10.1038/s41928-024-01318-6 Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Taehwan Jang, Yoonho Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park, Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, Shinhyun Choi
Memristor-based platforms could be used to create compact and energy-efficient artificial intelligence (AI) edge-computing systems due to their parallel computation ability in the analogue domain. However, systems based on memristor arrays face challenges implementing real-time AI algorithms with fully on-device learning due to reliability issues, such as low yield, poor uniformity and endurance problems. Here we report an analogue computing platform based on a selector-less analogue memristor array. We use interfacial-type titanium oxide memristors with a gradual oxygen distribution that exhibit high reliability, high linearity, forming-free attribute and self-rectification. Our platform—which consists of a selector-less (one-memristor) 1 K (32 × 32) crossbar array, peripheral circuitry and digital controller—can run AI algorithms in the analogue domain by self-calibration without compensation operations or pretraining. We illustrate the capabilities of the system with real-time video foreground and background separation, achieving an average peak signal-to-noise ratio of 30.49 dB and a structural similarity index measure of 0.81; these values are similar to those of simulations for the ideal case.
中文翻译:
在基于无选择器忆阻器阵列的模拟计算平台上进行具有自校准功能的自监督视频处理
由于基于忆阻器的平台在模拟领域的并行计算能力,因此可用于创建紧凑且节能的人工智能 (AI) 边缘计算系统。然而,由于可靠性问题,例如产量低、均匀性差和耐久性问题,基于忆阻器阵列的系统在实现具有完全设备端学习的实时 AI 算法方面面临挑战。在这里,我们报告了一个基于无选择器模拟忆阻器阵列的模拟计算平台。我们使用具有逐渐氧分布的界面型氧化钛忆阻器,具有高可靠性、高线性度、无成型属性和自整流性。我们的平台由无选择器(单忆阻器)1 K(32 × 32)交叉开关阵列、外围电路和数字控制器组成,可以通过自校准在模拟域中运行 AI 算法,无需补偿操作或预训练。我们通过实时视频前景和背景分离来说明该系统的功能,实现了 30.49 dB 的平均峰值信噪比和 0.81 的结构相似性指数测量;这些值类似于理想情况下的模拟值。