当前位置:
X-MOL 学术
›
Comput. Struct.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wheel-rail dynamic interaction induced by tread spalling integrating with pre-fatigue damage of materials
Computers & Structures ( IF 4.4 ) Pub Date : 2025-01-06 , DOI: 10.1016/j.compstruc.2024.107640
Jinneng Wang, Xiongfei Zhou, Kai Liu, Kaiyun Wang, Lin Jing
Computers & Structures ( IF 4.4 ) Pub Date : 2025-01-06 , DOI: 10.1016/j.compstruc.2024.107640
Jinneng Wang, Xiongfei Zhou, Kai Liu, Kaiyun Wang, Lin Jing
Tread spalling is a typical damage type of wheel tread of railway vehicles, which produces severe wheel-rail dynamic interaction, further aggravating the deterioration of crucial components of vehicle and track, especially for coupling with fatigue damage of wheel/rail materials generated in the long-term operation. In this study, a comprehensive three-dimensional (3-D) wheel-rail transient contact finite element model was constructed, to investigate wheel-rail dynamic interaction by tread spalling, where dynamic mechanical properties of wheel-rail material under different equivalent service cycles were considered. The time- and frequency-domain responses of wheel-rail contact forces, wheel-rail adhesion-slip distribution and stress states during wheel rolling over tread spalling region were examined, and the wheel-rail plastic deformation and wear damage were also predicted. Influences of pre-fatigue damage (PFD) and strain rate effect (SRE) of materials on wheel-rail dynamic interactions were highlighted, in terms of the effects of train speed, spalling length and spalling depth. The results indicate that wheel-rail forces and stress are greatly raised as the wheel rolls over spalling region, resulting in large plastic strain and wear damage on the wheel and rail. The SRE significantly inhibits plastic deformation and exacerbates wear of the wheel and rail, while PFD increases plastic deformation but mitigates wear damage to the wheel-rail system. The train speed and spalling length both have a notable effect on plastic strain and wear damage of wheel and rail, while spalling depth only has an obvious influence on the wheel. The detailed modelling and obtained results are beneficial for spalling identification in dynamic detection and reasonable maintenance of wheel-rail system.
中文翻译:
胎面剥落引起的轮轨动力学相互作用与材料预疲劳损伤的整合
胎面剥落是铁路车辆轮面的典型损伤类型,它产生严重的轮轨动力学相互作用,进一步加剧了车辆和轨道关键部件的劣化,特别是与轮轨材料在长期运行中产生的疲劳损伤耦合。在本研究中,构建了一个全面的三维 (3-D) 轮轨瞬态接触有限元模型,以研究胎面剥落引起的轮轨动力学相互作用,其中考虑了轮轨材料在不同等效使用循环下的动态力学性能。研究了车轮在胎面剥落区域滚动过程中轮轨接触力、轮轨粘附-滑移分布和应力状态的时域和频域响应,并预测了轮轨塑性变形和磨损损伤。强调了材料的疲劳前损伤 (PFD) 和应变率效应 (SRE) 对轮轨动力学相互作用的影响,包括列车速度、剥落长度和剥落深度的影响。结果表明,当车轮在剥落区域滚动时,轮轨力和应力大大增加,导致车轮和轨道的塑性应变和磨损损伤较大。SRE 显著抑制塑性变形并加剧轮轨磨损,而 PFD 增加塑性变形,但减轻轮轨系统的磨损损坏。列车速度和剥落长度均对轮轨的塑性应变和磨损损伤有显著影响,而剥落深度仅对车轮有明显影响。 详细的建模和得到的结果有利于轮轨系统动态检测和合理维护中的剥落识别。
更新日期:2025-01-06
中文翻译:
胎面剥落引起的轮轨动力学相互作用与材料预疲劳损伤的整合
胎面剥落是铁路车辆轮面的典型损伤类型,它产生严重的轮轨动力学相互作用,进一步加剧了车辆和轨道关键部件的劣化,特别是与轮轨材料在长期运行中产生的疲劳损伤耦合。在本研究中,构建了一个全面的三维 (3-D) 轮轨瞬态接触有限元模型,以研究胎面剥落引起的轮轨动力学相互作用,其中考虑了轮轨材料在不同等效使用循环下的动态力学性能。研究了车轮在胎面剥落区域滚动过程中轮轨接触力、轮轨粘附-滑移分布和应力状态的时域和频域响应,并预测了轮轨塑性变形和磨损损伤。强调了材料的疲劳前损伤 (PFD) 和应变率效应 (SRE) 对轮轨动力学相互作用的影响,包括列车速度、剥落长度和剥落深度的影响。结果表明,当车轮在剥落区域滚动时,轮轨力和应力大大增加,导致车轮和轨道的塑性应变和磨损损伤较大。SRE 显著抑制塑性变形并加剧轮轨磨损,而 PFD 增加塑性变形,但减轻轮轨系统的磨损损坏。列车速度和剥落长度均对轮轨的塑性应变和磨损损伤有显著影响,而剥落深度仅对车轮有明显影响。 详细的建模和得到的结果有利于轮轨系统动态检测和合理维护中的剥落识别。