当前位置: X-MOL 学术Comput. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Homogenization based topology optimization of a coupled thermal fluid-structure problem
Computers & Structures ( IF 4.4 ) Pub Date : 2025-01-03 , DOI: 10.1016/j.compstruc.2024.107636
Godfred Oheneba Agyekum, Laurent Cangémi, François Jouve

This article focuses on the topology optimization of a weakly coupled three physics problem. The structures are made of periodically perforated material, where the microscopic periodic cell is macroscopically modulated. The objective is to optimize the homogenized formulation of this system, where the coupling is weak because the three physics involved are solved consecutively: first, a coupled fluid flow is determined using the Biot-Darcy's law for the fluid domain, second, a thermal model using the convection-diffusion equation for the whole domain, and third, a three-physics problem by solving the linear poro-thermo elasticity problem in the solid domain. This approach allows low computational cost of evaluation of load sensitivities using the adjoint-state method. Two-dimensional and three-dimensional numerical problems are presented using the alternate directions algorithm. It is demonstrated how the implementation makes it possible to treat a variety of design problems.

中文翻译:


基于均质化的热流体-结构耦合拓扑优化



本文重点介绍弱耦合 3 物理场问题的拓扑优化。这些结构由周期性穿孔材料制成,其中微观周期性电池受到宏观调制。目标是优化该系统的均质公式,其中耦合很弱,因为涉及的三个物理场是连续求解的:首先,使用 Biot-Darcy 定律确定流体流动的流体流动,其次,使用对流-扩散方程确定整个域的热模型,第三,通过求解固体域中的线性多孔热弹性问题来确定三物理场问题。这种方法允许使用伴随状态方法评估负载敏感性的低计算成本。使用交替方向算法表示二维和三维数值问题。它演示了该实现如何使处理各种设计问题成为可能。
更新日期:2025-01-03
down
wechat
bug