当前位置:
X-MOL 学术
›
Comput. Aided Civ. Infrastruct. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Traffic estimation in work zones using a custom regression model and data augmentation
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2025-01-06 , DOI: 10.1111/mice.13413
Ali Hassandokht Mashhadi, Abbas Rashidi, Masoud Hamedi, Nikola Marković
Computer-Aided Civil and Infrastructure Engineering ( IF 8.5 ) Pub Date : 2025-01-06 , DOI: 10.1111/mice.13413
Ali Hassandokht Mashhadi, Abbas Rashidi, Masoud Hamedi, Nikola Marković
Accurately estimating traffic volumes in construction work zones is crucial for effective traffic management. However, one of the key challenges transportation agencies face is the limited coverage of continuous count station (CCS) sensors, which are often sparsely located and may not be positioned directly on roads where construction work zones are present. This spatial limitation leads to gaps in traffic data, making accurate volume estimation difficult. Addressing this, our study utilized a custom regularized model and variational autoencoders (VAE) to generate synthetic data that improves traffic volume estimations in these challenging areas. The proposed method not only bridges the data gaps between sparse CCS sensors but also outperforms several benchmark models, as measured by mean absolute percentage error, root mean square error, and mean absolute error. Moreover, the effectiveness of VAE‐augmented models in enhancing the precision and accuracy of traffic volume estimations further underscores the benefits of integrating synthetic data into traffic‐modeling approaches. These findings highlight the potential of the proposed approach to enhance traffic volume estimation in construction work zones and assist transportation agencies in making informed decisions for traffic management.
中文翻译:
使用自定义回归模型和数据增强进行工作区的交通估算
准确估计施工工作区的交通量对于有效的交通管理至关重要。然而,运输机构面临的主要挑战之一是连续计数站 (CCS) 传感器的覆盖范围有限,这些传感器通常位置稀疏,可能无法直接放置在存在施工工作区的道路上。这种空间限制会导致交通数据出现差距,从而难以准确估计体积。为了解决这个问题,我们的研究利用定制的正则化模型和变分自动编码器 (VAE) 来生成合成数据,以改进这些具有挑战性领域的交通量估计。所提出的方法不仅弥合了稀疏 CCS 传感器之间的数据差距,而且通过平均绝对百分比误差、均方根误差和平均绝对误差来衡量,其性能优于多个基准模型。此外,VAE 增强模型在提高交通量估计的精度和准确性方面的有效性进一步强调了将合成数据集成到交通建模方法中的好处。这些发现突出了所提出的方法在增强施工工作区交通量估计和协助交通机构做出明智的交通管理决策方面的潜力。
更新日期:2025-01-06
中文翻译:

使用自定义回归模型和数据增强进行工作区的交通估算
准确估计施工工作区的交通量对于有效的交通管理至关重要。然而,运输机构面临的主要挑战之一是连续计数站 (CCS) 传感器的覆盖范围有限,这些传感器通常位置稀疏,可能无法直接放置在存在施工工作区的道路上。这种空间限制会导致交通数据出现差距,从而难以准确估计体积。为了解决这个问题,我们的研究利用定制的正则化模型和变分自动编码器 (VAE) 来生成合成数据,以改进这些具有挑战性领域的交通量估计。所提出的方法不仅弥合了稀疏 CCS 传感器之间的数据差距,而且通过平均绝对百分比误差、均方根误差和平均绝对误差来衡量,其性能优于多个基准模型。此外,VAE 增强模型在提高交通量估计的精度和准确性方面的有效性进一步强调了将合成数据集成到交通建模方法中的好处。这些发现突出了所提出的方法在增强施工工作区交通量估计和协助交通机构做出明智的交通管理决策方面的潜力。