当前位置: X-MOL 学术J. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating maize root zone soil moisture by assimilating high spatiotemporal resolution optical and radar remote sensing into the WOFOST-HYDRUS coupled model
Journal of Hydrology ( IF 5.9 ) Pub Date : 2024-12-28 , DOI: 10.1016/j.jhydrol.2024.132618
Lei Li, Xiaofeng Li, Xingming Zheng, Hanyu Ju, Xiaojie Li, Tao Jiang, Xiangkun Wan

Root zone soil moisture (RZSM) has important applications in agricultural water resource management, drought monitoring and warning. Previous studies primarily assimilated one type of satellite data or data with coarse resolution; therefore, RZSM accuracy estimation by their methods was limited. This study builds a framework to couple crop and hydrology models through daily dynamic parameter transfers to estimate the RZSM per centimeter throughout the crop growing season. In the coupled framework, surface soil moisture (SSM) and leaf area index (LAI) were derived from high spatial resolution Sentinel-1 and Sentinel-2 data with average root mean square error (RMSE) of 0.054 cm3/cm3 and 0.40 m2/m2 respectively. The high-frequency (∼7 d) estimated SSM and LAI were assimilated into the coupled model using the ensemble Kalman filter (EnKF) method, and the results of the single-sensor (SSM or LAI) and dual-sensor (SSM and LAI) assimilations were compared with in-situ observations. Four RZSM estimation results were compared with the field observations; the RZSMWOHY (WOHY: World Food Studies (WOFOST) and HYDRUS-1D coupled model), RZSMWOHY_LAI (WOHY assimilate LAI), RZSMWOHY_SM (WOHY assimilate SSM), and the RZSMWOHY_SM_LAI (WOHY assimilate SSM and LAI). RZSMWOHY_SM_LAI had the highest accuracy among the three assimilation strategies and WOHY, with the lowest unbiased RMSEs (ubRMSE) of 0.050 cm3/cm3, 0.050 cm3/cm3, and 0.060 cm3/cm3 and high correlations of 0.63, 0.50, and 0.57 for 5, 10, and 60 cm soil depths, respectively. The results highlight that the framework can accurately capture vegetation growth processes and soil moisture dynamics in the root zone, providing data and methodological support for efficient water resource utilization and precision agriculture.

中文翻译:


通过将高时空分辨率光学和雷达遥感同化到 WOFOST-HYDRUS 耦合模型中来估算玉米根区土壤水分



根区土壤水分 (RZSM) 在农业水资源管理、干旱监测和预警方面具有重要应用。以前的研究主要吸收了一种类型的卫星数据或具有粗分辨率的数据;因此,通过他们的方法进行 RZSM 精度估计是有限的。本研究建立了一个框架,通过每日动态参数传递将作物和水文模型耦合起来,以估计整个作物生长季节每厘米的 RZSM。在耦合框架中,表层土壤湿度 (SSM) 和叶面积指数 (LAI) 来自高空间分辨率 Sentinel-1 和 Sentinel-2 数据,平均均方根误差 (RMSE) 分别为 0.054 cm3/cm3 和 0.40 m2/m2。使用集成卡尔曼滤波 (EnKF) 方法将高频 (∼7 d) 估计的 SSM 和 LAI 同化到耦合模型中,并将单传感器 (SSM 或 LAI) 和双传感器 (SSM 和 LAI) 同化的结果与原位观测结果进行了比较。将 4 个 RZSM 估计结果与现场观察结果进行了比较;RZSMWOHY (WOHY:世界食品研究 (WOFOST) 和 HYDRUS-1D 耦合模型)、RZSMWOHY_LAI (WOHY 同化 LAI)、RZSMWOHY_SM (WOHY 同化 SSM) 和 RZSMWOHY_SM_LAI (WOHY 同化 SSM 和 LAI)。RZSMWOHY_SM_LAI 在 3 种同化策略和 WOHY 中精度最高,最低的无偏 RMSE (ubRMSE) 为 0.050 cm3/cm3、0.050 cm3/cm3 和 0.060 cm3/cm3,对于 5、10 和 60 cm 土壤深度,高度相关性分别为 0.63、0.50 和 0.57。结果表明,该框架能够准确捕捉根区植被生长过程和土壤水分动态,为水资源高效利用和精准农业提供数据和方法支持。
更新日期:2024-12-28
down
wechat
bug