当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulation of Active Site Accessibility Enables Efficient Electrocatalytic CO2 Methanation
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-04 , DOI: 10.1021/acs.iecr.4c03428 Xiaofan Yang, Siyu Yi, Zhaolong Wang, Zhongqiu Wu, Ying Zhang, Junjie Yuan, Haibo Wang, Xiaojie She, Hui Xu
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2025-01-04 , DOI: 10.1021/acs.iecr.4c03428 Xiaofan Yang, Siyu Yi, Zhaolong Wang, Zhongqiu Wu, Ying Zhang, Junjie Yuan, Haibo Wang, Xiaojie She, Hui Xu
Electrocatalytic CO2 Reduction Reaction (ECO2RR) driven by renewable energy, which could convert CO2 into fuels or value-added chemicals, has become an effective approach to address environmental issues and the energy crisis. However, due to the low selectivity, the inferior activity, and unmanageable reconstruction of catalysts, the path of ECO2RR remains a significant challenge. In this study, a series of electrocatalysts composed of copper–lanthanum nanoparticles dispersed within a nitrogen-doped carbon framework (LaCu@NCF-x, where x represents the abbreviation of calcination temperatures) were synthesized by calcining the mixture of polymers and metal ions, in which thermal control is the key to the catalyst preparation process. Phase and morphological characterizations reveal that the degree of carbonization and the accessibility of active sites were modulated by the temperature of calcination. The study highlights the importance of the synergistic and confinement effects of the encapsulating carbon layer, which not only provides a favorable matrix for the nanoparticles but also mitigates the reconstruction of electrocatalysts, thereby significantly enhancing its performance in CH4 production during ECO2RR. In particular, the LaCu@NCF-3 catalyst demonstrates the maximum Faraday efficiency (FE) of CH4 up to 64.6% at −1.177 V vs RHE and superior stability. Moreover, it also maintains a high selectivity (FECH4 ≥ 60%) over the wide potential range from −0.977 V to −1.577 V vs RHE. This study provides a novel approach to the fabrication of efficient and stable Cu-based electrocatalyst for ECO2RR to CH4.
中文翻译:
调节主动场地可达性可实现高效的电催化 CO2 甲烷化
由可再生能源驱动的电催化 CO2 还原反应 (ECO2RR) 可以将 CO2 转化为燃料或增值化学品,已成为解决环境问题和能源危机的有效方法。然而,由于催化剂的选择性低、活性低下且难以控制重构,ECO2RR 的路径仍然是一个重大挑战。在本研究中,通过煅烧聚合物和金属离子的混合物,合成了一系列由分散在氮掺杂碳框架(LaCu@NCF-x,其中 x 代表煅烧温度的缩写)内的铜-镧纳米颗粒组成的电催化剂,其中热控制是催化剂制备过程的关键。相和形态特征表明,碳化程度和活性位点的可及性受煅烧温度的调节。该研究强调了封装碳层的协同和限制效应的重要性,它不仅为纳米颗粒提供了有利的基质,而且还减轻了电催化剂的重构,从而显着提高了其在 ECO2RR 期间在 CH4 生产中的性能。特别是,LaCu@NCF-3 催化剂在 -1.177 V 下与 RHE 相比,CH4 的最大法拉第效率 (FE) 高达 64.6%,并且具有出色的稳定性。此外,它还在 -0.977 V 至 -1.577 V 的宽电位范围内保持高选择性 (FECH4 ≥ 60%)(对 RHE)。本研究为制备用于 ECO2RR 至 CH4 的高效稳定的 Cu 基电催化剂提供了一种新方法。
更新日期:2025-01-04
中文翻译:
调节主动场地可达性可实现高效的电催化 CO2 甲烷化
由可再生能源驱动的电催化 CO2 还原反应 (ECO2RR) 可以将 CO2 转化为燃料或增值化学品,已成为解决环境问题和能源危机的有效方法。然而,由于催化剂的选择性低、活性低下且难以控制重构,ECO2RR 的路径仍然是一个重大挑战。在本研究中,通过煅烧聚合物和金属离子的混合物,合成了一系列由分散在氮掺杂碳框架(LaCu@NCF-x,其中 x 代表煅烧温度的缩写)内的铜-镧纳米颗粒组成的电催化剂,其中热控制是催化剂制备过程的关键。相和形态特征表明,碳化程度和活性位点的可及性受煅烧温度的调节。该研究强调了封装碳层的协同和限制效应的重要性,它不仅为纳米颗粒提供了有利的基质,而且还减轻了电催化剂的重构,从而显着提高了其在 ECO2RR 期间在 CH4 生产中的性能。特别是,LaCu@NCF-3 催化剂在 -1.177 V 下与 RHE 相比,CH4 的最大法拉第效率 (FE) 高达 64.6%,并且具有出色的稳定性。此外,它还在 -0.977 V 至 -1.577 V 的宽电位范围内保持高选择性 (FECH4 ≥ 60%)(对 RHE)。本研究为制备用于 ECO2RR 至 CH4 的高效稳定的 Cu 基电催化剂提供了一种新方法。