当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Piezoelectric neuron for neuromorphic computing
Journal of Materiomics ( IF 8.4 ) Pub Date : 2025-01-04 , DOI: 10.1016/j.jmat.2025.101013 Wenjie Li, Shan Tan, Zhen Fan, Zhiwei Chen, Jiali Ou, Kun Liu, Ruiqiang Tao, Guo Tian, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Xingsen Gao, Jun-Ming Liu
Journal of Materiomics ( IF 8.4 ) Pub Date : 2025-01-04 , DOI: 10.1016/j.jmat.2025.101013 Wenjie Li, Shan Tan, Zhen Fan, Zhiwei Chen, Jiali Ou, Kun Liu, Ruiqiang Tao, Guo Tian, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Xingsen Gao, Jun-Ming Liu
Neuromorphic computing has attracted great attention for its massive parallelism and high energy efficiency. As the fundamental components of neuromorphic computing systems, artificial neurons play a key role in information processing. However, the development of artificial neurons that can simultaneously incorporate low hardware overhead, high reliability, high speed, and low energy consumption remains a challenge. To address this challenge, we propose and demonstrate a piezoelectric neuron with a simple circuit structure, consisting of a piezoelectric cantilever, a parallel capacitor, and a series resistor. It operates through the synergy between the converse piezoelectric effect and the capacitive charging/discharging. Thanks to this efficient and robust mechanism, the piezoelectric neuron not only implements critical leaky integrate-and-fire functions (including leaky integration, threshold-driven spiking, all-or-nothing response, refractory period, strength-modulated firing frequency, and spatiotemporal integration), but also demonstrates small cycle-to-cycle and device-to-device variations (∼1.9% and ∼10.0%, respectively), high endurance (1010), high speed (integration/firing: ∼9.6/∼0.4 μs), and low energy consumption (∼13.4 nJ/spike). Furthermore, spiking neural networks based on piezoelectric neurons are constructed, showing capabilities to implement both supervised and unsupervised learning. This study therefore opens up a new way to develop high-performance artificial neurons by using piezoelectrics, which may facilitate the realization of advanced neuromorphic computing systems.
中文翻译:
用于神经形态计算的压电神经元
神经形态计算因其大规模并行性和高能效而受到广泛关注。人工神经元作为神经形态计算系统的基本组成部分,在信息处理中发挥着关键作用。然而,开发能够同时整合低硬件开销、高可靠性、高速度和低能耗的人工神经元仍然是一个挑战。为了应对这一挑战,我们提出并演示了一种具有简单电路结构的压电神经元,由压电悬臂、并联电容器和串联电阻器组成。它通过反向压电效应和电容充电/放电之间的协同作用来运作。得益于这种高效而稳健的机制,压电神经元不仅实现了关键的泄漏积分和发射功能(包括泄漏积分、阈值驱动的尖峰、全有或全无响应、不应期、强度调制发射频率和时空积分),而且还表现出小的周期间和器件间变化(分别为 ∼1.9% 和 ∼10.0%)、高耐久性 (1010)、高速(积分/触发:∼9.6/∼0.4 μs)和低能耗(∼13.4 nJ/尖峰)。此外,构建了基于压电神经元的脉冲神经网络,显示出实现有监督和无监督学习的能力。因此,这项研究开辟了一条利用压电体开发高性能人工神经元的新途径,这可能有助于实现先进的神经形态计算系统。
更新日期:2025-01-04
中文翻译:
用于神经形态计算的压电神经元
神经形态计算因其大规模并行性和高能效而受到广泛关注。人工神经元作为神经形态计算系统的基本组成部分,在信息处理中发挥着关键作用。然而,开发能够同时整合低硬件开销、高可靠性、高速度和低能耗的人工神经元仍然是一个挑战。为了应对这一挑战,我们提出并演示了一种具有简单电路结构的压电神经元,由压电悬臂、并联电容器和串联电阻器组成。它通过反向压电效应和电容充电/放电之间的协同作用来运作。得益于这种高效而稳健的机制,压电神经元不仅实现了关键的泄漏积分和发射功能(包括泄漏积分、阈值驱动的尖峰、全有或全无响应、不应期、强度调制发射频率和时空积分),而且还表现出小的周期间和器件间变化(分别为 ∼1.9% 和 ∼10.0%)、高耐久性 (1010)、高速(积分/触发:∼9.6/∼0.4 μs)和低能耗(∼13.4 nJ/尖峰)。此外,构建了基于压电神经元的脉冲神经网络,显示出实现有监督和无监督学习的能力。因此,这项研究开辟了一条利用压电体开发高性能人工神经元的新途径,这可能有助于实现先进的神经形态计算系统。