当前位置:
X-MOL 学术
›
Rev. Geophys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Influence of Topography on the Global Terrestrial Water Cycle
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2025-01-03 , DOI: 10.1029/2023rg000810
Sebastian Gnann, Jane W. Baldwin, Mark O. Cuthbert, Tom Gleeson, Wolfgang Schwanghart, Thorsten Wagener
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2025-01-03 , DOI: 10.1029/2023rg000810
Sebastian Gnann, Jane W. Baldwin, Mark O. Cuthbert, Tom Gleeson, Wolfgang Schwanghart, Thorsten Wagener
Topography affects the distribution and movement of water on Earth, yet new insights about topographic controls continue to surprise us and exciting puzzles remain. Here we combine literature review and data synthesis to explore the influence of topography on the global terrestrial water cycle, from the atmosphere down to the groundwater. Above the land surface, topography induces gradients and contrasts in water and energy availability. Long-term precipitation usually increases with elevation in the mid-latitudes, while it peaks at low- to mid-elevations in the tropics. Potential evaporation tends to decrease with elevation in all climate zones. At the land surface, topography is expressed in snow distribution, vegetation zonation, geomorphic landforms, the critical zone, and drainage networks. Evaporation and vegetation activity are often highest at low- to mid-elevations where neither temperature, nor energy availability, nor water availability—often modulated by lateral moisture redistribution—impose strong limitations. Below the land surface, topography drives the movement of groundwater from local to continental scales. In many steep upland regions, groundwater systems are well connected to streams and provide ample baseflow, and streams often start losing water in foothills where bedrock transitions into highly permeable sediment. We conclude by presenting organizing principles, discussing the implications of climate change and human activity, and identifying data needs and knowledge gaps. A defining feature resulting from topography is the presence of gradients and contrasts, whose interactions explain many of the patterns we observe in nature and how they might change in the future.
中文翻译:
地形对全球陆地水循环的影响
地形影响着地球上水的分布和运动,但关于地形控制的新见解继续让我们感到惊讶,令人兴奋的谜题仍然存在。在这里,我们结合了文献综述和数据综合,以探索地形对全球陆地水循环的影响,从大气到地下水。在地表以上,地形会引起水和能源可用性的梯度和对比。长期降水通常在中纬度地区随海拔升高而增加,而在热带地区,长期降水在中低海拔地区达到峰值。在所有气候区,潜在蒸发量都倾向于随着海拔升高而降低。在地表,地形以积雪分布、植被分区、地貌地貌、临界区和排水网络表示。蒸发和植被活动通常在中低海拔地区最高,那里的温度、能源可用性和水可用性(通常受横向水分重新分布的调节)都没有施加很大的限制。在地表以下,地形驱动地下水从局部尺度向大陆尺度移动。在许多陡峭的高地地区,地下水系统与溪流紧密相连,提供充足的基流,溪流经常在山麓开始失水,那里的基岩转变为高渗透性沉积物。最后,我们提出了组织原则,讨论了气候变化和人类活动的影响,并确定了数据需求和知识差距。地形的一个决定性特征是梯度和对比的存在,它们的相互作用解释了我们在自然界中观察到的许多模式以及它们在未来可能如何变化。
更新日期:2025-01-04
中文翻译:
地形对全球陆地水循环的影响
地形影响着地球上水的分布和运动,但关于地形控制的新见解继续让我们感到惊讶,令人兴奋的谜题仍然存在。在这里,我们结合了文献综述和数据综合,以探索地形对全球陆地水循环的影响,从大气到地下水。在地表以上,地形会引起水和能源可用性的梯度和对比。长期降水通常在中纬度地区随海拔升高而增加,而在热带地区,长期降水在中低海拔地区达到峰值。在所有气候区,潜在蒸发量都倾向于随着海拔升高而降低。在地表,地形以积雪分布、植被分区、地貌地貌、临界区和排水网络表示。蒸发和植被活动通常在中低海拔地区最高,那里的温度、能源可用性和水可用性(通常受横向水分重新分布的调节)都没有施加很大的限制。在地表以下,地形驱动地下水从局部尺度向大陆尺度移动。在许多陡峭的高地地区,地下水系统与溪流紧密相连,提供充足的基流,溪流经常在山麓开始失水,那里的基岩转变为高渗透性沉积物。最后,我们提出了组织原则,讨论了气候变化和人类活动的影响,并确定了数据需求和知识差距。地形的一个决定性特征是梯度和对比的存在,它们的相互作用解释了我们在自然界中观察到的许多模式以及它们在未来可能如何变化。