Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transmetalation for DNA-based Molecular Electronics
ChemRxiv Pub Date : 2025-01-03 , DOI: 10.26434/chemrxiv-2025-nkbgv Simon, Vecchioni, Arpan, De, Brandon, Lu, Yoel P., Ohayon, Karol, Woloszyn, William, Livernois, Chu-fan, Yang, Chengde, Mao, Antia S., Botana, Joshua, Hihath, James W., Canary, Ruojie, Sha, M.P., Anantram, Lara, Perren
ChemRxiv Pub Date : 2025-01-03 , DOI: 10.26434/chemrxiv-2025-nkbgv Simon, Vecchioni, Arpan, De, Brandon, Lu, Yoel P., Ohayon, Karol, Woloszyn, William, Livernois, Chu-fan, Yang, Chengde, Mao, Antia S., Botana, Joshua, Hihath, James W., Canary, Ruojie, Sha, M.P., Anantram, Lara, Perren
The rational design of molecular electronics remains a grand challenge of materials science. DNA nanotechnology has offered unmatched control over molecular geometry, but direct electronic functionalization has been a challenge. We present here a generalized method for tuning the local band structure of DNA using transmetalation in metal- mediated base pairs (mmDNA). We develop a method for time-resolved X-ray diffraction using self-assembling DNA crystals to establish the exchange of Ag+ and Hg2+ in T:T base pairs driven by pH exchange. Transmetalation is tracked over six reaction phases as crystal pH is changed from pH 8.0 to 11.0, and vice versa. We then perform a detailed computational analysis of the electronic configuration and transmission in the ensuing crystal structures. Our findings reveal a high conductance contrast in the lowest unoccupied molecular orbitals (LUMO) as a result of metalation. The ability to exchange single transition metal ions as a result of environmental stimuli heralds a means of modulating the conductance of DNA-based molecular electronics. In this way, we establish both a theoretical and experimental basis by which mmDNA can be leveraged to build rewritable memory devices and nanoelectronics.
中文翻译:
用于基于 DNA 的分子电子学的金属转移
分子电子学的合理设计仍然是材料科学的一个巨大挑战。DNA 纳米技术提供了无与伦比的分子几何形状控制,但直接电子功能化一直是一个挑战。我们在这里提出了一种利用金属介导的碱基对 (mmDNA) 中的转金属来调节 DNA 局部条带结构的通用方法。我们开发了一种使用自组装 DNA 晶体进行时间分辨 X 射线衍射的方法,以在 pH 交换驱动下建立 T:T 碱基对中 Ag+ 和 Hg 2+ 的交换。当晶体 pH 值从 pH 值 8.0 变为 11.0 时,在六个反应阶段中跟踪金属转移,反之亦然。然后,我们对随后的晶体结构中的电子构型和传输进行了详细的计算分析。我们的研究结果揭示了由于金属化,在最低未占据分子轨道 (LUMO) 中具有高电导对比度。由于环境刺激而交换单个过渡金属离子的能力预示着一种调节基于 DNA 的分子电子学电导的方法。通过这种方式,我们建立了理论和实验基础,通过该基础,mmDNA 可以用于构建可重写的存储设备和纳米电子学。
更新日期:2025-01-03
中文翻译:
用于基于 DNA 的分子电子学的金属转移
分子电子学的合理设计仍然是材料科学的一个巨大挑战。DNA 纳米技术提供了无与伦比的分子几何形状控制,但直接电子功能化一直是一个挑战。我们在这里提出了一种利用金属介导的碱基对 (mmDNA) 中的转金属来调节 DNA 局部条带结构的通用方法。我们开发了一种使用自组装 DNA 晶体进行时间分辨 X 射线衍射的方法,以在 pH 交换驱动下建立 T:T 碱基对中 Ag+ 和 Hg 2+ 的交换。当晶体 pH 值从 pH 值 8.0 变为 11.0 时,在六个反应阶段中跟踪金属转移,反之亦然。然后,我们对随后的晶体结构中的电子构型和传输进行了详细的计算分析。我们的研究结果揭示了由于金属化,在最低未占据分子轨道 (LUMO) 中具有高电导对比度。由于环境刺激而交换单个过渡金属离子的能力预示着一种调节基于 DNA 的分子电子学电导的方法。通过这种方式,我们建立了理论和实验基础,通过该基础,mmDNA 可以用于构建可重写的存储设备和纳米电子学。