Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transition Metal Schiff Base Complexes as Potential Non-Platinum Catalysts for Hydrogen Evolution Reaction: A Comparative Study of Co (II) and Ni (II)
ChemRxiv Pub Date : 2025-01-03 , DOI: 10.26434/chemrxiv-2025-v53df Chidi Daniel, Chukwu
ChemRxiv Pub Date : 2025-01-03 , DOI: 10.26434/chemrxiv-2025-v53df Chidi Daniel, Chukwu
The necessity for non-platinum catalysts in the context of hydrogen evolution is predominantly driven by the limited availability and substantial cost of platinum, which is currently the most effective catalyst for this reaction. In this study, we present the findings of the first principle calculation of alternative transition metals with the potential to compete with platinum for catalytic HER. To this end, we employed Chemdraw, Material Studio DMOL3, MATLAB, and other relevant software for the modeling and structural analysis, electronic properties, Gibbs free energy calculation, and calculation of overpotential, respectively for Co (II) and Ni (II) (E)-3-hydroxy-N’-(1-(6-methyl-2,4-dioxo-3,4-dihydro-2H-pyran-3-yl)ethylidene)-2-naphthohydrazide complexes. The investigation revealed that the Co (II) and Ni (II) complexes are ion exchange resin catalyst that exhibited a coordination number of 6, with the former displaying a tetradentate coordination and the latter exhibiting a bidentate coordination. The atomic charges indicated that the nickel (II) complex possesses seven electropositive centers, while the cobalt (II) complex has eight. The predicted carbon centers, C8, C11, C12, C15, C18, C19, C20, and C22, were identified. According to the surface energy values, Ni (II) Schiff base complexes exhibit superior efficiency for HER, attributable to their enhanced surface stability and reactivity. These properties render Ni (II) complexes more suitable for catalytic applications, whereas Co (II) complexes may necessitate further optimization to achieve comparable performance. The free energy values of the Co (II) (0.126977 eV) and Ni (II) (-0.12503 eV) Schiff base complexes indicate significant differences in their catalytic efficiency for HER. The negative free energy of the Ni (II) complex indicates that the reaction is exothermic, meaning it releases energy and proceeds spontaneously. The overpotential of Co (II) is found to be remarkably low (1.054257189511323e-25 eV), suggesting its potential to function as an ideal catalyst for the Hydrogen Evolution Reaction (HER). The negligible overpotential of cobalt renders it a promising candidate as a theoretically ideal HER catalyst due to its capacity to form stable Schiff base tetradentate ligands, thereby enhancing its electrochemical properties. Nickel, which exhibits a relatively high overpotential, remains a viable and cost-effective option for practical applications. However, further investigation is necessary to validate the performance of cobalt, which exhibits an extraordinarily low overpotential, for HER applications.
中文翻译:
过渡金属席夫基配合物作为析氢反应的潜在非铂催化剂:Co (II) 和 Ni (II) 的比较研究
在析氢的背景下,非铂催化剂的必要性主要是由于铂的有限可用性和巨大的成本,而铂是目前该反应最有效的催化剂。在这项研究中,我们提出了替代过渡金属的第一原理计算结果,这些金属有可能与铂竞争催化 HER。为此,我们使用 Chemdraw、Material Studio DMOL3、MATLAB 和其他相关软件分别对 Co (II) 和 Ni (II) (E)-3-羟基-N'-(1-(6-甲基-2,4-二氧代-3,4-二氢-2H-吡喃-3-基)亚乙基)-2-萘肼配合物进行建模和结构分析、电子性质、吉布斯自由能计算和过电位计算。研究显示,Co (II) 和 Ni (II) 配合物是离子交换树脂催化剂,其配位数为 6,前者表现出四齿配位,后者表现出双齿配位。原子电荷表明镍 (II) 络合物具有 7 个正电中心,而钴 (II) 络合物具有 8 个。确定了预测的碳中心 C8 、 C11 、 C12 、 C15 、 C18 、 C19 、 C20 和 C22。根据表面能值,Ni (II) 希夫碱配合物对 HER 表现出卓越的效率,这归因于它们增强的表面稳定性和反应性。这些特性使 Ni (II) 配合物更适合催化应用,而 Co (II) 配合物可能需要进一步优化才能获得相当的性能。Co (II) (0.126977 eV) 和 Ni (II) (-0.12503 eV) 希夫碱配合物的自由能值表明它们对 HER 的催化效率存在显着差异。 Ni (II) 络合物的负自由能表明反应是放热的,这意味着它释放能量并自发进行。发现 Co (II) 的过电位非常低 (1.054257189511323e-25 eV),表明它有可能成为析氢反应 (HER) 的理想催化剂。钴的过电位可以忽略不计,使其成为理论上理想的 HER 催化剂的有前途的候选者,因为它能够形成稳定的席夫碱四齿配体,从而增强其电化学性能。镍表现出相对较高的过电位,对于实际应用来说,它仍然是一种可行且具有成本效益的选择。然而,需要进一步研究以验证钴在 HER 应用中的性能,钴表现出极低的过电位。
更新日期:2025-01-03
中文翻译:
过渡金属席夫基配合物作为析氢反应的潜在非铂催化剂:Co (II) 和 Ni (II) 的比较研究
在析氢的背景下,非铂催化剂的必要性主要是由于铂的有限可用性和巨大的成本,而铂是目前该反应最有效的催化剂。在这项研究中,我们提出了替代过渡金属的第一原理计算结果,这些金属有可能与铂竞争催化 HER。为此,我们使用 Chemdraw、Material Studio DMOL3、MATLAB 和其他相关软件分别对 Co (II) 和 Ni (II) (E)-3-羟基-N'-(1-(6-甲基-2,4-二氧代-3,4-二氢-2H-吡喃-3-基)亚乙基)-2-萘肼配合物进行建模和结构分析、电子性质、吉布斯自由能计算和过电位计算。研究显示,Co (II) 和 Ni (II) 配合物是离子交换树脂催化剂,其配位数为 6,前者表现出四齿配位,后者表现出双齿配位。原子电荷表明镍 (II) 络合物具有 7 个正电中心,而钴 (II) 络合物具有 8 个。确定了预测的碳中心 C8 、 C11 、 C12 、 C15 、 C18 、 C19 、 C20 和 C22。根据表面能值,Ni (II) 希夫碱配合物对 HER 表现出卓越的效率,这归因于它们增强的表面稳定性和反应性。这些特性使 Ni (II) 配合物更适合催化应用,而 Co (II) 配合物可能需要进一步优化才能获得相当的性能。Co (II) (0.126977 eV) 和 Ni (II) (-0.12503 eV) 希夫碱配合物的自由能值表明它们对 HER 的催化效率存在显着差异。 Ni (II) 络合物的负自由能表明反应是放热的,这意味着它释放能量并自发进行。发现 Co (II) 的过电位非常低 (1.054257189511323e-25 eV),表明它有可能成为析氢反应 (HER) 的理想催化剂。钴的过电位可以忽略不计,使其成为理论上理想的 HER 催化剂的有前途的候选者,因为它能够形成稳定的席夫碱四齿配体,从而增强其电化学性能。镍表现出相对较高的过电位,对于实际应用来说,它仍然是一种可行且具有成本效益的选择。然而,需要进一步研究以验证钴在 HER 应用中的性能,钴表现出极低的过电位。