Combinatorica ( IF 1.0 ) Pub Date : 2025-01-02 , DOI: 10.1007/s00493-024-00128-w
Lina Li , Gweneth McKinley , Jinyoung Park
For an odd integer \(n = 2d-1\), let \({\mathcal {B}}_d\) be the subgraph of the hypercube \(Q_n\) induced by the two largest layers. In this paper, we describe the typical structure of proper q-colorings of \(V({\mathcal {B}}_d)\) and give asymptotics on the number of such colorings when q is an even number. The proofs use various tools including information theory (entropy), Sapozhenko’s graph container method and a recently developed method of Jenssen and Perkins that combines Sapozhenko’s graph container lemma with the cluster expansion for polymer models from statistical physics.
中文翻译:

汉明立方体中间层的着色数
对于奇数 \(n = 2d-1\),设 \({\mathcal {B}}_d\) 是由两个最大层引起的超立方体 \(Q_n\) 的子图。在本文中,我们描述了 \(V({\mathcal {B}}_d)\) 的正确 q 着色的典型结构,并给出了当 q 为偶数时这种着色的数量的渐近。这些证明使用了各种工具,包括信息论(熵)、Sapozhenko 的图容器方法以及 Jenssen 和 Perkins 最近开发的方法,该方法将 Sapozhenko 的图容器引理与统计物理学中聚合物模型的集群扩展相结合。