Combinatorica ( IF 1.0 ) Pub Date : 2025-01-02 , DOI: 10.1007/s00493-024-00125-z
Saba Lepsveridze , Aleksandre Saatashvili , Yufei Zhao
A spherical L-code, where \(L \subseteq [-1,\infty )\), consists of unit vectors in \(\mathbb {R}^d\) whose pairwise inner products are contained in L. Determining the maximum cardinality \(N_L(d)\) of an L-code in \(\mathbb {R}^d\) is a fundamental question in discrete geometry and has been extensively investigated for various choices of L. Our understanding in high dimensions is generally quite poor. Equiangular lines, corresponding to \(L = \{-\alpha , \alpha \}\), is a rare and notable solved case. Bukh studied an extension of equiangular lines and showed that \(N_L(d) = O_L(d)\) for \(L = [-1, -\beta ] \cup \{\alpha \}\) with \(\alpha ,\beta > 0\) (we call such L-codes “uniacute”), leaving open the question of determining the leading constant factor. Balla, Dräxler, Keevash, and Sudakov proved a “uniform bound” showing \(\limsup _{d\rightarrow \infty } N_L(d)/d \le 2p\) for \(L = [-1, -\beta ] \cup \{\alpha \}\) and \(p = \lfloor \alpha /\beta \rfloor + 1\). For which \((\alpha ,\beta )\) is this uniform bound tight? We completely answer this question. We develop a framework for studying uniacute codes, including a global structure theorem showing that the Gram matrix has an approximate p-block structure. We also formulate a notion of “modular codes,” which we conjecture to be optimal in high dimensions.
中文翻译:

Uniacute 球形代码
球形 L 码,其中 \(L \subseteq [-1,\infty )\) 由 \(\mathbb {R}^d\) 中的单位向量组成,其成对内积包含在 L 中。确定 \(\mathbb {R}^d\) 中 L 码的最大基数 \(N_L(d)\) 是离散几何中的一个基本问题,并且已经对 L 的各种选择进行了广泛的研究。我们对高维的理解通常很差。对应于 \(L = \{-\alpha , \alpha \}\) 的等角线是一种罕见且值得注意的已解决情况。Bukh 研究了等角线的延伸,并表明 \(L = [-1, -\beta ] \cup \{\alpha \}\) 与 \(\alpha ,\beta > 0\) 的 \(N_L(d) = O_L(d)\) (我们称这种 L 码为“单尖”),留下了确定前导常数因子的悬而未决的问题。Balla、Dräxler、Keevash 和 Sudakov 证明了一个“均匀边界”,显示 \(L = [-1, -\beta ] \cup \{\alpha \}\) 和 \(p = \lfloor \alpha /\beta \rfloor + 1\) 的 \(\limsup _{d\rightarrow \infty } N_L(d)/d \le 2p\)。对于哪个 \((\alpha ,\beta )\) 这个 uniform bound tight?我们完全回答了这个问题。我们开发了一个研究单急性代码的框架,包括一个全局结构定理,表明 Gram 矩阵具有近似的 p 块结构。我们还提出了一个 “模块化代码 ”的概念,我们推测它在高维度中是最佳的。