当前位置:
X-MOL 学术
›
Comput. Struct.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Accurate and flexible shape sensing of shell structures with polygonal inverse finite element method
Computers & Structures ( IF 4.4 ) Pub Date : 2024-12-30 , DOI: 10.1016/j.compstruc.2024.107638
Shishun Zhang, Xiao Xiao, Hanyu Chen, Jianping Xuan
Computers & Structures ( IF 4.4 ) Pub Date : 2024-12-30 , DOI: 10.1016/j.compstruc.2024.107638
Shishun Zhang, Xiao Xiao, Hanyu Chen, Jianping Xuan
The inverse Finite Element Method (iFEM) based on triangular and quadrilateral elements faces significant challenges in complex shell structures due to slow convergence or poor mesh quality. In this study, a novel variable-node polygonal iFEM is developed to enhance the accuracy and flexibility of shape sensing for complex shell structures. Shear and membrane behaviors are respectively improved by the Mixed Interpolation of Tensorial Components (MITC) method and the Strain-Smoothed Element (SSE) method. Moreover, the precision of shape sensing at low mesh densities is improved through a polygonal Smoothing Element Analysis (SEA) method and an iFEM paradigm for curved shell elements based on MITC. Finally, numerical examples demonstrate that the polygonal iFEM achieves high-precision deformation reconstruction with less strain data, supports flexible mesh refinement and strain sensor deployment, and meets the shape sensing demands of shell structures with complex shapes and load conditions.
中文翻译:
基于多边形逆有限元法的壳结构精确灵活的形状传感
基于三角形和四边形单元的逆有限元法 (iFEM) 由于收敛缓慢或网格质量差,在复杂壳结构中面临重大挑战。在本研究中,开发了一种新型可变节点多边形 iFEM,以提高复杂壳结构形状传感的准确性和灵活性。剪切和膜行为分别通过张量混合插值 (MITC) 方法和应变平滑元 (SSE) 方法得到改善。此外,通过多边形平滑单元分析 (SEA) 方法和基于 MITC 的曲面壳单元 iFEM 范式,提高了低网格密度下形状传感的精度。最后,数值算例证明,多边形 iFEM 以更少的应变数据实现了高精度的变形重建,支持灵活的网格细化和应变传感器部署,满足了复杂形状和载荷条件下壳体结构的形状传感需求。
更新日期:2024-12-30
中文翻译:
基于多边形逆有限元法的壳结构精确灵活的形状传感
基于三角形和四边形单元的逆有限元法 (iFEM) 由于收敛缓慢或网格质量差,在复杂壳结构中面临重大挑战。在本研究中,开发了一种新型可变节点多边形 iFEM,以提高复杂壳结构形状传感的准确性和灵活性。剪切和膜行为分别通过张量混合插值 (MITC) 方法和应变平滑元 (SSE) 方法得到改善。此外,通过多边形平滑单元分析 (SEA) 方法和基于 MITC 的曲面壳单元 iFEM 范式,提高了低网格密度下形状传感的精度。最后,数值算例证明,多边形 iFEM 以更少的应变数据实现了高精度的变形重建,支持灵活的网格细化和应变传感器部署,满足了复杂形状和载荷条件下壳体结构的形状传感需求。