当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Impacts of Erosion on the Carbon Cycle
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2025-01-02 , DOI: 10.1029/2023rg000829
Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost

Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr−1, globally) and chemical erosion (0.26–0.48 Pg C yr−1). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr−1 on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr−1) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.

中文翻译:


侵蚀对碳循环的影响



与水相关的物理和化学侵蚀都会影响陆地与大气的碳交换。然而,以前的研究经常单独讨论这些过程或使用过于简化的机制,导致关于侵蚀诱导碳通量的持续争论和不确定性。我们概述了物理侵蚀(全球 0.05-0.29 Pg C yr −1 )和化学侵蚀(0.26-0.48 Pg C yr)引起的现场碳吸收通量 −1 。然后,我们讨论了场外碳动力学(在运输、沉积和掩埋过程中)。全球运输过程中的土壤有机碳矿化量接近 0.37-1.20 Pg C yr −1 。我们还总结了河口的整体碳通量 (0.71-1.06 Pg C yr −1 ),并确定了其中不同类型碳的来源,其中大部分与土地侵蚀有关。目前量化物理侵蚀引起的垂直碳通量的方法集中在两个不同的时间尺度上:短期动力学(从几分钟到几十年不等),强调净垂直碳通量,以及长期动力学(跨越千年到地质时间尺度),研究侵蚀碳在较长时间内的归宿。除了直接的化学测量和建模方法外,使用河流物质指标的估计在限制化学侵蚀驱动的碳通量方面也很受欢迎。最后,我们强调了量化相关通量的主要挑战。为了克服未来研究中的潜在偏差,我们强烈建议在明确的时间尺度上进行综合研究,同时解决物理和化学侵蚀问题。全面了解驱动侵蚀引起的横向和垂直碳通量的机制对于关闭全球碳预算至关重要。
更新日期:2025-01-02
down
wechat
bug