当前位置: X-MOL 学术Eur. J. Org. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quinoid Carbene Mediated C(sp2)‐Heteroatom Bond Formation
European Journal of Organic Chemistry ( IF 2.5 ) Pub Date : 2024-12-31 , DOI: 10.1002/ejoc.202401282
Hongying Cheng, Xiaokun Wang, Kai Tan, Xiaoyu Ren, Zhen Guo, Chengming Wang, Cong-Ying Zhou

C(sp2)‐heteroatom bonds play a critical role in biologically active molecules, pharmaceuticals, and functional materials. Traditional methods for synthesizing these bonds often rely on transition metal‐catalyzed cross‐coupling reactions, such as the Buchwald‐Hartwig and Ullmann reactions, which have limitations, including the requirement for elevated temperature and basic conditions. In recent years, diazo quinones have emerged as promising reagents for C(sp2)‐heteroatom bond formation due to their unique structural and reactive properties, which include high electrophilicity and a tendency toward aromatization. This review highlights recent advances in the use of quinoid carbenes, derived from diazo quinones, for the construction of C(sp2)‐N, C(sp2)‐O, and C(sp2)‐S bonds. Key methodologies discussed include rhodium‐, iridium‐, ruthenium‐ and palladium‐catalyzed cross‐coupling reactions, heteroatom‐H bond insertion reactions, migration reactions and sigmatropic rearrangements. These methods offer mild, functional group‐tolerant alternatives to traditional approaches, showcasing their utility in the synthesis of complex bioactive molecules, medicinally relevant compounds, and materials.

中文翻译:


喹啉卡宾介导的 C(sp2)-杂原子键形成



C(sp2)-杂原子键在生物活性分子、药物和功能材料中起着关键作用。合成这些键的传统方法通常依赖于过渡金属催化的交叉偶联反应,例如 Buchwald-Hartwig 和 Ullmann 反应,这些反应具有局限性,包括对高温和基本条件的要求。近年来,重氮醌因其独特的结构和反应特性(包括高亲电性和芳构化倾向)而成为 C(sp2)-杂原子键形成的有前途的试剂。本综述重点介绍了使用源自重氮醌的喹类卡宾构建 C(sp2)-N、C(sp2)-O 和 C(sp2)-S 键的最新进展。讨论的主要方法包括铑、铱、钌和钯催化的交叉偶联反应、杂原子-H 键插入反应、迁移反应和 σ 重排。这些方法为传统方法提供了温和、官能团耐受性的替代方案,展示了它们在合成复杂生物活性分子、药用相关化合物和材料中的效用。
更新日期:2024-12-31
down
wechat
bug