当前位置:
X-MOL 学术
›
Journal of Archaeological Science
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
How teeth record and attenuate seasonal signals
Journal of Archaeological Science ( IF 2.6 ) Pub Date : 2024-12-28 , DOI: 10.1016/j.jas.2024.106148
Daniel R. Green, Tanya M. Smith, Gerry Olack, Ian S. Williams, Paul Tafforeau, Albert S. Colman, Kevin T. Uno
Journal of Archaeological Science ( IF 2.6 ) Pub Date : 2024-12-28 , DOI: 10.1016/j.jas.2024.106148
Daniel R. Green, Tanya M. Smith, Gerry Olack, Ian S. Williams, Paul Tafforeau, Albert S. Colman, Kevin T. Uno
Variability of oxygen isotopes in environmental water is recorded in tooth enamel, providing a record of seasonal change, dietary variability, and mobility. Physiology dampens this variability, however, as oxygen passes from environmental sources into blood and forming teeth. We showcase two methods of high resolution, 2-dimensional enamel sampling, and conduct modeling, to report why and how environmental oxygen isotope variability is reduced in animal bodies and teeth. First, using two modern experimental sheep, we introduce a sampling method, die-saw dicing, that provides high-resolution physical samples (n = 109 and 111 sample locations per tooth) for use in conventional stable isotope and molecular measurement protocols. Second, we use an ion microprobe to sample innermost enamel in an experimental sheep (n = 156 measurements), and in a Pleistocene orangutan (n = 176 measurements). Synchrotron and conventional μCT scans reveal innermost enamel thicknesses averaging 18 and 21 μm in width. Experimental data in sheep show that compared to drinking water, oxygen isotope variability in blood is reduced to 70–90 %; inner and innermost enamel retain between 36 and 48 % of likely drinking water stable isotope range, but this recovery declines to 28–34 % in outer enamel. 2D isotope sampling suggests that declines in isotopic variability, and shifted isotopic oscillations throughout enamel, result from the angle of secretory hydroxyapatite deposition and its overprinting by maturation. This overprinting occurs at all locations including innermost enamel, and is greatest in outer enamel. These findings confirm that all regions of enamel undergo maturation to varying degrees and confirm that inner and innermost enamel preserve more environmental variability than other regions. We further show how the resolution of isotope sampling — not only the spatial resolution within teeth, but also the temporal resolution of water in the environment — impacts our estimate of how much variation teeth recover from the environment. We suggest inverse methods, or multiplication by standard factors determined by ecology, taxon, and sampling strategy, to reconstruct the full scale of seasonal environmental variability. We advocate for combined inverse modeling and high-resolution sampling informed by the spatiotemporal pattern of enamel formation, and at the inner or innermost enamel when possible, to recover seasonal records from teeth.
中文翻译:
牙齿如何记录和减弱季节性信号
在牙釉质中记录了环境水中氧同位素的变化,从而提供了季节变化、饮食变化和活动能力的记录。然而,生理学抑制了这种可变性,因为氧气从环境源进入血液并形成牙齿。我们展示了两种高分辨率、二维牙釉质采样的方法,并进行了建模,以报告动物身体和牙齿中环境氧同位素变异性的原因和方式降低。首先,使用两只现代实验绵羊,我们介绍了一种采样方法,即模锯切割,该方法提供高分辨率物理样本(每颗牙齿 n = 109 和 111 个样本位置),用于常规稳定同位素和分子测量方案。其次,我们使用离子微探针对实验绵羊(n = 156 次测量)和更新世猩猩(n = 176 次测量)的最内层牙釉质进行采样。同步加速器和常规 μCT 扫描显示最内层的牙釉质厚度平均为 18 μm 和 21 μm。绵羊的实验数据表明,与饮用水相比,血液中的氧同位素变异性降低到 70-90 %;内层和最内层的牙釉质保留了可能的饮用水稳定同位素范围的 36% 至 48%,但外层牙釉质的回收率下降到 28-34%。2D 同位素采样表明,同位素变异性的下降和整个牙釉质的同位素振荡的偏移是由于分泌型羟基磷灰石沉积的角度及其成熟后的覆盖作用造成的。这种叠印发生在包括最内层牙釉质在内的所有位置,并且在外层牙釉质中最为严重。这些发现证实了牙釉质的所有区域都在不同程度上经历了成熟,并证实了内层和最内层的牙釉质比其他区域保留了更多的环境变异性。 我们进一步展示了同位素采样的分辨率——不仅是牙齿内的空间分辨率,还有环境中水的时间分辨率——如何影响我们对牙齿从环境中恢复多少变化的估计。我们建议使用逆法,或乘以由生态学、分类群和抽样策略确定的标准因子,以重建季节性环境变率的全尺度。我们提倡结合逆向建模和高分辨率采样,以牙釉质形成的时空模式为信息,并尽可能在牙釉质内部或最内部进行采样,以恢复牙齿的季节性记录。
更新日期:2024-12-28
中文翻译:

牙齿如何记录和减弱季节性信号
在牙釉质中记录了环境水中氧同位素的变化,从而提供了季节变化、饮食变化和活动能力的记录。然而,生理学抑制了这种可变性,因为氧气从环境源进入血液并形成牙齿。我们展示了两种高分辨率、二维牙釉质采样的方法,并进行了建模,以报告动物身体和牙齿中环境氧同位素变异性的原因和方式降低。首先,使用两只现代实验绵羊,我们介绍了一种采样方法,即模锯切割,该方法提供高分辨率物理样本(每颗牙齿 n = 109 和 111 个样本位置),用于常规稳定同位素和分子测量方案。其次,我们使用离子微探针对实验绵羊(n = 156 次测量)和更新世猩猩(n = 176 次测量)的最内层牙釉质进行采样。同步加速器和常规 μCT 扫描显示最内层的牙釉质厚度平均为 18 μm 和 21 μm。绵羊的实验数据表明,与饮用水相比,血液中的氧同位素变异性降低到 70-90 %;内层和最内层的牙釉质保留了可能的饮用水稳定同位素范围的 36% 至 48%,但外层牙釉质的回收率下降到 28-34%。2D 同位素采样表明,同位素变异性的下降和整个牙釉质的同位素振荡的偏移是由于分泌型羟基磷灰石沉积的角度及其成熟后的覆盖作用造成的。这种叠印发生在包括最内层牙釉质在内的所有位置,并且在外层牙釉质中最为严重。这些发现证实了牙釉质的所有区域都在不同程度上经历了成熟,并证实了内层和最内层的牙釉质比其他区域保留了更多的环境变异性。 我们进一步展示了同位素采样的分辨率——不仅是牙齿内的空间分辨率,还有环境中水的时间分辨率——如何影响我们对牙齿从环境中恢复多少变化的估计。我们建议使用逆法,或乘以由生态学、分类群和抽样策略确定的标准因子,以重建季节性环境变率的全尺度。我们提倡结合逆向建模和高分辨率采样,以牙釉质形成的时空模式为信息,并尽可能在牙釉质内部或最内部进行采样,以恢复牙齿的季节性记录。