当前位置:
X-MOL 学术
›
Appl. Math. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Finite time blow-up for a heat equation in [formula omitted]
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-12-26 , DOI: 10.1016/j.aml.2024.109441 Kaiqiang Zhang
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-12-26 , DOI: 10.1016/j.aml.2024.109441 Kaiqiang Zhang
We consider the semilinear heat equation u t − Δ u = | u | p − 1 u + λ u , on R n where p > 1 , and λ ∈ R is a parameter. When λ = 0 , the equation reduces to the classical heat equation. We reveal that the parameter λ in the linear term plays an important role in the blow-up conditions. Although the solution may blow up in finite time due to the cumulative effect of the nonlinearities, interestingly, we find that for λ > n 2 , all non-negative solutions blow up in finite time, which shows that the Fujita exponent is equal to + ∞ . Our result extends the Theorem 17.1 in Quittner and Souplet (2007). In addition, for λ < 0 , we provide a new sufficient condition for the finite time blow-up solution.
中文翻译:
[公式省略] 中热方程的有限时间放大
我们考虑半线性热方程 ut−Δu=|u|p−1u+λu,onRn其中 p>1,λ∈R 是一个参数。当 λ=0 时,方程简化为经典的热方程。我们揭示了线性项中的参数 λ 在爆炸条件下起着重要作用。虽然由于非线性的累积效应,解可能会在有限的时间内爆炸,但有趣的是,我们发现对于 λ>n2,所有非负解都在有限的时间内爆炸,这表明藤田指数等于 +∞。我们的结果扩展了 Quittner 和 Souplet (2007) 中的定理 17.1。此外,对于 λ<0,我们为有限时间放大解提供了新的充分条件。
更新日期:2024-12-26
中文翻译:
[公式省略] 中热方程的有限时间放大
我们考虑半线性热方程 ut−Δu=|u|p−1u+λu,onRn其中 p>1,λ∈R 是一个参数。当 λ=0 时,方程简化为经典的热方程。我们揭示了线性项中的参数 λ 在爆炸条件下起着重要作用。虽然由于非线性的累积效应,解可能会在有限的时间内爆炸,但有趣的是,我们发现对于 λ>n2,所有非负解都在有限的时间内爆炸,这表明藤田指数等于 +∞。我们的结果扩展了 Quittner 和 Souplet (2007) 中的定理 17.1。此外,对于 λ<0,我们为有限时间放大解提供了新的充分条件。