Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High plant density optimizes leaf stomatal traits for accelerating the stomatal response rate at the lower cotton canopy
Crop Science ( IF 2.0 ) Pub Date : 2024-12-28 , DOI: 10.1002/csc2.21443 Xilin Li, Xiaoming Li, Tong Zhang, Xiaofei Xue, Yunjing Dai, Zhangying Lei, Daohua He
Crop Science ( IF 2.0 ) Pub Date : 2024-12-28 , DOI: 10.1002/csc2.21443 Xilin Li, Xiaoming Li, Tong Zhang, Xiaofei Xue, Yunjing Dai, Zhangying Lei, Daohua He
Plants are often exposed to fluctuating light from a few seconds to a few minutes due to cloud movements, mutual shading of leaves, and change in the angle of the sun. Slow stomatal response to fluctuating light leads to carbon loss, but the influence of planting density on light fluctuation frequency and on stomatal response and carbon gain has yet to be fully explored. To fill this knowledge gap, we investigated leaf morphology, stomatal anatomy and response rate, nitrogen content, biomass, and yield under low density, moderate density, and high density (HD) of cotton cultivar (Gossypium hirsutum L.). The results showed that higher planting density significantly increased light fluctuation frequency at the lower canopy. Stomatal size significantly decreased with the increase in planting density, while total stomatal density was consistent. Stomatal density had greater plasticity of determining maximum stomatal conductance than stomatal size. Faster stomatal response rate to fluctuating light under HD was attributed to smaller and denser stomata in the abaxial leaf side. Therefore, cotton under HD treatment had faster photosynthetic induction rate under light induction, resulting in greater carbon gain. We conclude that faster stomatal response rate achieved by the optimization of stomatal anatomy, especially the abaxial side, plays a crucial role in obtaining more carbon gain, biomass, and yield under HD cotton field. This finding indicates that selecting varieties with rapid stomatal response traits and planting at appropriate densities may optimize fluctuating light use to achieve higher yields.
中文翻译:
高植株密度优化了叶片气孔性状,以加快下部棉花冠层的气孔响应率
由于云层运动、叶子的相互遮蔽和太阳角度的变化,植物经常暴露在几秒钟到几分钟的波动光下。气孔对波动光的缓慢响应导致碳损失,但种植密度对光波动频率和气孔响应和碳增益的影响尚未得到充分探讨。为了填补这一知识空白,我们研究了棉花品种 (Gossypium hirsutum L.) 在低密度、中等密度和高密度 (HD) 下的叶片形态、气孔解剖结构和响应率、氮含量、生物量和产量。结果表明:较高的种植密度显著增加了较低冠层的光照波动频率。气孔大小随种植密度的增加而显著减小,而总气孔密度保持一致。气孔密度在决定最大气孔导度方面比气孔大小具有更大的可塑性。HD 下气孔对波动光的响应率较快归因于背轴叶侧较小且较密集的气孔。因此,HD 处理下的棉花在光诱导下具有较快的光合诱导速率,从而获得更大的碳增益。我们得出结论,优化气孔解剖结构,尤其是背轴侧,实现更快的气孔反应率,对 HD 棉田下获得更多的碳增益、生物量和产量起着至关重要的作用。这一发现表明,选择具有快速气孔反应性状的品种并以适当的密度种植可能会优化波动的光利用以实现更高的产量。
更新日期:2024-12-28
中文翻译:
高植株密度优化了叶片气孔性状,以加快下部棉花冠层的气孔响应率
由于云层运动、叶子的相互遮蔽和太阳角度的变化,植物经常暴露在几秒钟到几分钟的波动光下。气孔对波动光的缓慢响应导致碳损失,但种植密度对光波动频率和气孔响应和碳增益的影响尚未得到充分探讨。为了填补这一知识空白,我们研究了棉花品种 (Gossypium hirsutum L.) 在低密度、中等密度和高密度 (HD) 下的叶片形态、气孔解剖结构和响应率、氮含量、生物量和产量。结果表明:较高的种植密度显著增加了较低冠层的光照波动频率。气孔大小随种植密度的增加而显著减小,而总气孔密度保持一致。气孔密度在决定最大气孔导度方面比气孔大小具有更大的可塑性。HD 下气孔对波动光的响应率较快归因于背轴叶侧较小且较密集的气孔。因此,HD 处理下的棉花在光诱导下具有较快的光合诱导速率,从而获得更大的碳增益。我们得出结论,优化气孔解剖结构,尤其是背轴侧,实现更快的气孔反应率,对 HD 棉田下获得更多的碳增益、生物量和产量起着至关重要的作用。这一发现表明,选择具有快速气孔反应性状的品种并以适当的密度种植可能会优化波动的光利用以实现更高的产量。