当前位置:
X-MOL 学术
›
Cement Concrete Comp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Performance and characterization of nano-engineered silica waste concrete composite for efficient marine radionuclides remediation
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-12-27 , DOI: 10.1016/j.cemconcomp.2024.105914 Jean-Baptiste Mawulé Dassekpo, Chonkei Iong, Dejing Chen, , Xiaoxiong Zha, Jianqiao Ye
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-12-27 , DOI: 10.1016/j.cemconcomp.2024.105914 Jean-Baptiste Mawulé Dassekpo, Chonkei Iong, Dejing Chen, , Xiaoxiong Zha, Jianqiao Ye
The disposal of solid and radioactive waste poses significant risks to terrestrial and marine ecosystems. This study presents a sustainable solution by recycling silica-rich glass waste (RG) and fly ash (FA) to develop a functional nanocomposite concrete for radionuclide treatment. A Radionuclide removal Zeolite (RrZ) was hydrothermally synthesized from RG powder at low temperature and NaOH molar ratio. The RrZ was incorporated into a porous geopolymer composite concrete (PGCC) comprising 20% RrZ and 80% FA, with SiO₂/Na₂O = 1, liquid-to-solid ratio (L/S) = 0.33, paste-to-bone ratio (B/A) varying from 0.15–0.2, and porosity (P) from 14.95–25.45%. The results from SEM, TEM and BET indicated a highly porous structure of RrZ adsorbent with mesopores capable of achieving high adsorption efficiency (83.13–97.71% for Sr2⁺ and 55.31–91.01% for Cs⁺) within short time, adhering to the quasi-second-order kinetic models. Moreover, the XRD results identified key crystalline phase of analcime (NaAlSi₂O₆•H₂O), and no new phase formed after ion exchange with Sr2⁺ and Cs⁺, while the FTIR analysis revealed minimal chemical changes post-adsorption. Additionally, the porosity of 14.95% - 25.45% and water permeability of 1.876–11.956 mm/s were the key factors for PGCC design, while larger aggregates and lower B/A ratios helped to optimize the adsorption. The ANOVA analysis revealed that aggregate size was the most significant factor for single-cycle adsorption, followed by porosity and B/A ratio. This study demonstrates that PGCC effectively combines waste recycling with environmental remediation, offering a durable and efficient method for hazardous radionuclide removal from marine ecosystems.
中文翻译:
纳米工程二氧化硅废混凝土复合材料在海洋放射性核素高效修复中的性能与表征
固体和放射性废物的处置对陆地和海洋生态系统构成重大风险。本研究提出了一种可持续的解决方案,通过回收富含二氧化硅的玻璃废料 (RG) 和粉煤灰 (FA) 来开发一种用于放射性核素处理的功能性纳米复合混凝土。A 以 RG 粉末为原料,在低温和 NaOH 摩尔比下以水热法合成放射性核素去除沸石 (RrZ)。将 RrZ 掺入多孔地质聚合物复合混凝土 (PGCC) 中,其中含有 20% RrZ 和 80% FA,SiO₂/Na₂O = 1,液固比 (L/S) = 0.33,膏骨比 (B/A) 在 0.15-0.2 之间变化,孔隙度 (P) 在 14.95-25.45% 之间。SEM、TEM 和 BET 结果表明,RrZ 吸附剂具有高度多孔的结构,介孔能够在短时间内实现高吸附效率 (Sr2⁺ 为 83.13–97.71%,Cs⁺ 为 55.31–91.01%),符合准二级动力学模型。此外,XRD 结果确定了分析的关键晶相 (NaAlSi₂O₆•H₂O),与 Sr2⁺ 和 Cs⁺ 进行离子交换后没有形成新的相,而 FTIR 分析显示吸附后的化学变化很小。此外,14.95% - 25.45% 的孔隙率和 1.876–11.956 mm/s 的透水性是 PGCC 设计的关键因素,而较大的聚集体和较低的 B/A 比有助于优化吸附。方差分析显示,聚集体尺寸是单循环吸附的最重要因素,其次是孔隙率和 B/A 比。这项研究表明,PGCC 有效地将废物回收与环境修复相结合,为从海洋生态系统中去除有害放射性核素提供了一种持久有效的方法。
更新日期:2024-12-28
中文翻译:
纳米工程二氧化硅废混凝土复合材料在海洋放射性核素高效修复中的性能与表征
固体和放射性废物的处置对陆地和海洋生态系统构成重大风险。本研究提出了一种可持续的解决方案,通过回收富含二氧化硅的玻璃废料 (RG) 和粉煤灰 (FA) 来开发一种用于放射性核素处理的功能性纳米复合混凝土。A 以 RG 粉末为原料,在低温和 NaOH 摩尔比下以水热法合成放射性核素去除沸石 (RrZ)。将 RrZ 掺入多孔地质聚合物复合混凝土 (PGCC) 中,其中含有 20% RrZ 和 80% FA,SiO₂/Na₂O = 1,液固比 (L/S) = 0.33,膏骨比 (B/A) 在 0.15-0.2 之间变化,孔隙度 (P) 在 14.95-25.45% 之间。SEM、TEM 和 BET 结果表明,RrZ 吸附剂具有高度多孔的结构,介孔能够在短时间内实现高吸附效率 (Sr2⁺ 为 83.13–97.71%,Cs⁺ 为 55.31–91.01%),符合准二级动力学模型。此外,XRD 结果确定了分析的关键晶相 (NaAlSi₂O₆•H₂O),与 Sr2⁺ 和 Cs⁺ 进行离子交换后没有形成新的相,而 FTIR 分析显示吸附后的化学变化很小。此外,14.95% - 25.45% 的孔隙率和 1.876–11.956 mm/s 的透水性是 PGCC 设计的关键因素,而较大的聚集体和较低的 B/A 比有助于优化吸附。方差分析显示,聚集体尺寸是单循环吸附的最重要因素,其次是孔隙率和 B/A 比。这项研究表明,PGCC 有效地将废物回收与环境修复相结合,为从海洋生态系统中去除有害放射性核素提供了一种持久有效的方法。