当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inorganic Bioelectric System for Nitrate Removal with Low N2O Production at Cold Temperatures of 4 and 10°C
Water Research ( IF 11.4 ) Pub Date : 2024-12-27 , DOI: 10.1016/j.watres.2024.123061 Mingyi Xu, Francesco Savio, Charlotte Kjaergaard, Marlene Mark Jensen, Adam Kovalovszki, Barth F. Smets, Borja Valverde-Pérez, Yifeng Zhang
Water Research ( IF 11.4 ) Pub Date : 2024-12-27 , DOI: 10.1016/j.watres.2024.123061 Mingyi Xu, Francesco Savio, Charlotte Kjaergaard, Marlene Mark Jensen, Adam Kovalovszki, Barth F. Smets, Borja Valverde-Pérez, Yifeng Zhang
Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges. At 10 and 4°C, the system achieved total nitrogen (TN) removal efficiencies of 95.4 ± 2.7% and 90.9 ± 1.9% at 2 hour hydraulic retention time (HRT), while maximum TN removal rates were recorded as 206.0 ± 6.3 and 178.3 ± 9.4 g N·m-3·d-1 at 1 hour HRT. The microbial analysis uncovered shifts in dominant genera across temperatures, with Dechloromonas prevalent at 10°C and Chryseobacterium at 4°C, highlighting adaptability to cold-tolerant species. Gene analysis on narG, napA, nirS, nirK, norB, nosZI, nosZII, and nifA examined the nitrate reduction processes, and analysis on mtrC and omcA hinted at electrotrophic processes. Additionally, we demonstrated system resilience to disruptions of power outage and short periods without flow through. These findings establish a foundational understanding of electricity-driven nitrate bioreduction in cold environments, crucial in groundwater remediation strategies and paving the way for future optimization and upscaling efforts.
中文翻译:
无机生物电系统,用于在 4°C 和 10°C 的低温下去除硝酸盐,产生低 N2O
地下水对生态稳定和淡水供应至关重要,但正面临日益严重的硝酸盐污染。传统的生物方法与有机碳稀缺和低温作斗争,因此迫切需要探索有效的地下水修复方法。在这项工作中,我们提出了一种旨在应对这些挑战的无机生物电系统。在 10°C 和 4°C 下,系统在 2 h 水力停留时间 (HRT) 下实现了 95.4 ± 2.7% 和 90.9 ± 1.9% 的总氮 (TN) 去除效率,而最大 TN 去除率记录为 206.0 ± 6.3 和 178.3 ± 9.4 g N·m-3·d-1 在 1 h HRT 下。微生物分析揭示了优势属随温度的变化,Dechloromonas 在 10°C 时普遍存在,Chryseobacterium 在 4°C 时普遍存在,突出了对耐寒物种的适应性。narG 、 napA 、 nir S 、 nir K 、 norB 、 nosZI 、 nosZII 和 nifA 的基因分析检查了硝酸盐还原过程,而 mtrC 和 omcA 的分析提示了电营养过程。此外,我们还展示了系统对停电中断和短时间无流量的弹性。这些发现建立了对寒冷环境中电力驱动的硝酸盐生物还原的基础理解,这对于地下水修复策略至关重要,并为未来的优化和扩大工作铺平了道路。
更新日期:2024-12-28
中文翻译:
无机生物电系统,用于在 4°C 和 10°C 的低温下去除硝酸盐,产生低 N2O
地下水对生态稳定和淡水供应至关重要,但正面临日益严重的硝酸盐污染。传统的生物方法与有机碳稀缺和低温作斗争,因此迫切需要探索有效的地下水修复方法。在这项工作中,我们提出了一种旨在应对这些挑战的无机生物电系统。在 10°C 和 4°C 下,系统在 2 h 水力停留时间 (HRT) 下实现了 95.4 ± 2.7% 和 90.9 ± 1.9% 的总氮 (TN) 去除效率,而最大 TN 去除率记录为 206.0 ± 6.3 和 178.3 ± 9.4 g N·m-3·d-1 在 1 h HRT 下。微生物分析揭示了优势属随温度的变化,Dechloromonas 在 10°C 时普遍存在,Chryseobacterium 在 4°C 时普遍存在,突出了对耐寒物种的适应性。narG 、 napA 、 nir S 、 nir K 、 norB 、 nosZI 、 nosZII 和 nifA 的基因分析检查了硝酸盐还原过程,而 mtrC 和 omcA 的分析提示了电营养过程。此外,我们还展示了系统对停电中断和短时间无流量的弹性。这些发现建立了对寒冷环境中电力驱动的硝酸盐生物还原的基础理解,这对于地下水修复策略至关重要,并为未来的优化和扩大工作铺平了道路。