当前位置: X-MOL 学术Appl. Water Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
S-Scheme CuMn2O4/g-C3N4 heterojunction: fabrication, characterization, and investigation of photodegradation potential of organic pollutants
Applied Water Science ( IF 5.7 ) Pub Date : 2024-12-28 , DOI: 10.1007/s13201-024-02348-3
Masoumeh Yaqoubi, Masoud Salavati-Niasari, Mojgan Ghanbari

Outstanding photocatalytic performance can be achieved by designing and building heterojunction photocatalysts with a suitable interfacial contact and staggered energy band structure. A simple two-step technique was used to manufacture hybrid inorganic/organic nanocomposites made of copper manganese oxide (CuMn2O4) and g-C3N4. Multiple techniques were employed to characterize the hybridized CuMn2O4/g-C3N4 heterostructure. CuMn2O4/g-C3N4 (0.2:1) efficiently destroyed 91% of erythrosine (10 ppm) below visible lamp in 90 min, being better than the performance of both CuMn2O4 and g-C3N4 and has superior stability. The primary reactive species involved in the photocatalytic breakdown of erythrosine over the nanocomposite were photogenerated superoxide ion radicals. The research results led to the proposal of a photocatalytic mechanism via the nanocomposite for the degradation of erythrosine. Based on the experimental data, a unique S-scheme model was presented to illuminate the charge transport mechanism. This work offers a straightforward method for creating innovative step-scheme photocatalysts for environmental and associated applications. This study revealed that the combination of CuMn2O4 and g-C3N4 as composites shows great potential for efficient photocatalytic dye degradation applications.



中文翻译:


S-Scheme CuMn2O4/g-C3N4 异质结:有机污染物光降解电位的制备、表征和研究



通过设计和构建具有合适的界面接触和交错能带结构的异质结光催化剂,可以实现出色的光催化性能。使用简单的两步技术制造由铜锰氧化物 (CuMn2O4) 和 g-C3N4 制成的杂化无机/有机纳米复合材料。采用多种技术来表征杂化的 CuMn2O4/g-C3N4 异质结构。CuMn2O4/g-C3N4 (0.2:1) 在 90 分钟内有效破坏了可见光下 91% 的赤藓红 (10 ppm),优于 CuMn2O4 和 g-C3N4 的性能,并且具有优异的稳定性。参与赤藓红在纳米复合材料上的光催化分解的主要反应性物质是光生超氧离子自由基。研究结果导致提出了一种通过纳米复合材料降解赤藓红的光催化机制。基于实验数据,提出了一个独特的 S 方案模型来阐明电荷传输机制。这项工作为创建用于环境和相关应用的创新阶梯式光催化剂提供了一种简单的方法。本研究表明,CuMn2O4 和 g-C3N4 作为复合材料的组合显示出高效光催化染料降解应用的巨大潜力。

更新日期:2024-12-28
down
wechat
bug