当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface Design Based on Strain Isolation Theory with Optimized Neutral Mechanical Plane Enables Highly Ductile and Flexible Organic Photovoltaics
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-27 , DOI: 10.1039/d4ee02963a Shumin Zeng, Haojie Li, Siqi Liu, Tangyue Xue, Kai Zhang, Lin Hu, Zheren Cai, Yongting Cui, Hanlin Wang, Meng Zhang, Long Ye, Xiaotian Hu, Yanlin Song, Yiwang Chen
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-27 , DOI: 10.1039/d4ee02963a Shumin Zeng, Haojie Li, Siqi Liu, Tangyue Xue, Kai Zhang, Lin Hu, Zheren Cai, Yongting Cui, Hanlin Wang, Meng Zhang, Long Ye, Xiaotian Hu, Yanlin Song, Yiwang Chen
Flexible organic solar cells (FOSCs) have gained significant attention as a promising power source for wearable electronics. PEDOT:PSS is a commonly used function layer material in FOSCs due to excellent light transparency and electrical conductivity, especially suitable for interface and electrode materials. However, PEDOT:PSS have poor phase separation, resulting in rough surface that is unfavorable for contact between upper and lower layers, as well as poor mechanical properties. Herein, we optimize the neutral mechanical plane based on strain isolation and investigate the improvement mechanism of Poly(TA-DIB-Fe) intermediate protective layer on the mechanical properties of PEDOT:PSS layers and FOSCs. The interface design is applied to transparent electrodes on a 25 cm2 substrate to prepare ultra-flexible modules with a power conversion efficiency (PCE) of more than 14%. The mechanical stability evaluation of the crumpled thin and lightweight large-area module is conducted for the first time. The PCE loss is less than 5% after 1000 cycles of bending, and the module maintain good operational performance after crumpling tests. This study presents a novel theory and method for enhancing the tenacity of flexible electronics and provides scientific guidance for the large-scale application of wearable electronics.
中文翻译:
基于应变隔离理论的界面设计与优化的中性机械平面可实现高延展性和柔性的有机光伏
柔性有机太阳能电池 (FOSC) 作为可穿戴电子产品的有前途的电源而受到广泛关注。PEDOT:PSS 由于具有优异的透光性和导电性,是 FOSC 中常用的功能层材料,特别适用于界面和电极材料。然而,PEDOT:PSS 的相分离性较差,导致表面粗糙,不利于上下层接触,以及较差的机械性能。本文基于应变隔离优化了中性力学平面,并研究了 Poly(TA-DIB-Fe) 中间保护层对 PEDOT:PSS 层和 FOSCs 力学性能的改进机制。接口设计应用于 25 cm2 基板上的透明电极,以制备功率转换效率 (PCE) 超过 14% 的超柔性模块。首次对皱巴巴的轻薄大面积模块进行了机械稳定性评估。经过 1000 次弯曲循环后,PCE 损耗小于 5%,组件在起皱测试后仍保持良好的运行性能。本研究提出了一种增强柔性电子学韧性的新理论和方法,为可穿戴电子学的大规模应用提供了科学指导。
更新日期:2024-12-27
中文翻译:
基于应变隔离理论的界面设计与优化的中性机械平面可实现高延展性和柔性的有机光伏
柔性有机太阳能电池 (FOSC) 作为可穿戴电子产品的有前途的电源而受到广泛关注。PEDOT:PSS 由于具有优异的透光性和导电性,是 FOSC 中常用的功能层材料,特别适用于界面和电极材料。然而,PEDOT:PSS 的相分离性较差,导致表面粗糙,不利于上下层接触,以及较差的机械性能。本文基于应变隔离优化了中性力学平面,并研究了 Poly(TA-DIB-Fe) 中间保护层对 PEDOT:PSS 层和 FOSCs 力学性能的改进机制。接口设计应用于 25 cm2 基板上的透明电极,以制备功率转换效率 (PCE) 超过 14% 的超柔性模块。首次对皱巴巴的轻薄大面积模块进行了机械稳定性评估。经过 1000 次弯曲循环后,PCE 损耗小于 5%,组件在起皱测试后仍保持良好的运行性能。本研究提出了一种增强柔性电子学韧性的新理论和方法,为可穿戴电子学的大规模应用提供了科学指导。