当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Mechanoelectrochemical Activity of Liquid Metals Induced GaN Growth via N2 Molecular Clipping at Room Temperature
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-26 , DOI: 10.1021/acssuschemeng.4c07890 Jile Wang, Xue Zhao, Shuanghao Yin, Wei-Hua Mu, Guanghua Wang, Jing Liu, Tingting Guo, Liangfei Duan
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-26 , DOI: 10.1021/acssuschemeng.4c07890 Jile Wang, Xue Zhao, Shuanghao Yin, Wei-Hua Mu, Guanghua Wang, Jing Liu, Tingting Guo, Liangfei Duan
Atomic-level modification of molecules represents a crucial pathway for developing advanced functional materials and serves as a cornerstone of advanced chemical synthesis. Molecular clipping offers a facile, low-energy approach for regulating the composition and structure of materials, with broad implications for diverse fields. However, existing molecular clipping techniques, including covalent bond breaking and releasing of intermediates, remain synthetically demanding, hindering their wider adoption. The electron-rich surface of liquid metals confers a lower reaction potential, suggesting considerable significant potential for catalysis and enabling traditionally demanding reactions to proceed efficiently in a simple, low-energy manner. Herein, the unique surface properties of liquid metals were utilized for nitrogen (N2) clipping and achieving facile synthesis of gallium nitride (GaN) at room temperature, which was previously generally considered unattainable. In a N2 atmosphere, the liquid metals were stimulated and stirred through polytetrafluoroethylene (PTFE), resulting in the generation, accumulation, and transport of electric charges on the surface of liquid metals and leading to the formation of microcurrents. This process facilitated the clipping of the exceptionally strong N≡N bond, generating reactive nitrogen species that subsequently reacted with gallium (Ga) to form GaN. This work offers a facile and potentially generalizable strategy for complex molecular editing, advancing the development of atomically precise functional materials.
中文翻译:
液态金属的界面机械电化学活性在室温下通过 N2 分子剪切诱导 GaN 生长
分子的原子级修饰是开发先进功能材料的关键途径,是先进化学合成的基石。分子剪切为调节材料的组成和结构提供了一种简单、低能量的方法,对不同领域具有广泛的影响。然而,现有的分子剪切技术,包括共价键断裂和中间体的释放,仍然对合成要求很高,阻碍了它们的广泛采用。液态金属的富电子表面赋予了较低的反应电位,这表明具有相当大的催化潜力,并使传统上要求的反应能够以简单、低能量的方式高效进行。在此,液态金属的独特表面特性被用于氮 (N2) 剪切并在室温下实现氮化镓 (GaN) 的简单合成,这在以前通常被认为是无法实现的。在 N2 气氛中,液态金属通过聚四氟乙烯 (PTFE) 受到刺激和搅拌,导致电荷在液态金属表面产生、积累和传输,并导致微电流的形成。这个过程促进了异常强的 N≡N 键的剪切,产生活性氮,随后与镓 (Ga) 反应形成 GaN。这项工作为复杂的分子编辑提供了一种简单且可能可推广的策略,推动了原子精确功能材料的开发。
更新日期:2024-12-27
中文翻译:
液态金属的界面机械电化学活性在室温下通过 N2 分子剪切诱导 GaN 生长
分子的原子级修饰是开发先进功能材料的关键途径,是先进化学合成的基石。分子剪切为调节材料的组成和结构提供了一种简单、低能量的方法,对不同领域具有广泛的影响。然而,现有的分子剪切技术,包括共价键断裂和中间体的释放,仍然对合成要求很高,阻碍了它们的广泛采用。液态金属的富电子表面赋予了较低的反应电位,这表明具有相当大的催化潜力,并使传统上要求的反应能够以简单、低能量的方式高效进行。在此,液态金属的独特表面特性被用于氮 (N2) 剪切并在室温下实现氮化镓 (GaN) 的简单合成,这在以前通常被认为是无法实现的。在 N2 气氛中,液态金属通过聚四氟乙烯 (PTFE) 受到刺激和搅拌,导致电荷在液态金属表面产生、积累和传输,并导致微电流的形成。这个过程促进了异常强的 N≡N 键的剪切,产生活性氮,随后与镓 (Ga) 反应形成 GaN。这项工作为复杂的分子编辑提供了一种简单且可能可推广的策略,推动了原子精确功能材料的开发。