当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unraveling the C–C Coupling Mechanism on Dual-Atom Catalysts for CO2/CO Reduction Reaction: The Critical Role of CO Hydrogenation
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-27 , DOI: 10.1021/acs.jpclett.4c03123 Minghao He, Chong-Hui Jiang, Hui-Min Yan, Guofeng Wang, Yang-Gang Wang
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-27 , DOI: 10.1021/acs.jpclett.4c03123 Minghao He, Chong-Hui Jiang, Hui-Min Yan, Guofeng Wang, Yang-Gang Wang
The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C–C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C2+ products by employing density functional theory calculations. We have demonstrated that the two adsorbed CO species on bimetallic sites cannot directly couple unless one of the CO molecules is hydrogenated. All the dual metal atom catalysts prefer a similar coupling mechanism, i.e., the asymmetric coupling of *CO on the bridged site and *CHO on the top site, while the Ni2 and Cu2 catalysts exhibit much better performance with moderate adsorption energies and low energy barriers. The enhanced activities are attributed to the decrease of the energy levels of *CO 2p states that weakens the metal–C bonding and thus facilitates the feasible C–C coupling with both low reaction energies and low barriers. These insights have revealed the significant role of the hydrogenation of CO species prior to the coupling step and may provide a theoretical perspective to understand the generation of C2+ products in the CO2/CORR.
中文翻译:
揭示双原子催化剂在 CO2/CO 还原反应中的 C-C 偶联机制:CO 加氢的关键作用
CO 对高价值多碳产品的电化学还原反应 (RR) 对于碳的利用非常有利。由于 C-C 偶联的双金属位点的协同作用,由 N 掺杂石墨烯分散的双过渡金属原子能够成为该工艺的高效催化剂。在这项工作中,我们筛选了由 N 掺杂石墨烯分散的同核双原子催化剂,以通过密度泛函理论计算研究 CO 还原为 C2+ 产物的潜力。我们已经证明,除非其中一个 CO 分子被氢化,否则双金属位点上的两种吸附的 CO 物质不能直接偶联。所有双金属原子催化剂都喜欢类似的偶联机制,即 *CO 在桥接位点和 *CHO 在顶部位点的不对称耦合,而 Ni2 和 Cu2 催化剂在中等吸附能和低能量屏障下表现出更好的性能。增强的活性归因于 *CO 2p 态能级的降低,这削弱了金属-C 键合,从而促进了具有低反应能和低势垒的可行的 C-C 耦合。这些见解揭示了 CO 物质氢化在偶联步骤之前的重要作用,并可能为理解 CO2/CORR 中 C2+ 产物的产生提供理论视角。
更新日期:2024-12-27
中文翻译:
揭示双原子催化剂在 CO2/CO 还原反应中的 C-C 偶联机制:CO 加氢的关键作用
CO 对高价值多碳产品的电化学还原反应 (RR) 对于碳的利用非常有利。由于 C-C 偶联的双金属位点的协同作用,由 N 掺杂石墨烯分散的双过渡金属原子能够成为该工艺的高效催化剂。在这项工作中,我们筛选了由 N 掺杂石墨烯分散的同核双原子催化剂,以通过密度泛函理论计算研究 CO 还原为 C2+ 产物的潜力。我们已经证明,除非其中一个 CO 分子被氢化,否则双金属位点上的两种吸附的 CO 物质不能直接偶联。所有双金属原子催化剂都喜欢类似的偶联机制,即 *CO 在桥接位点和 *CHO 在顶部位点的不对称耦合,而 Ni2 和 Cu2 催化剂在中等吸附能和低能量屏障下表现出更好的性能。增强的活性归因于 *CO 2p 态能级的降低,这削弱了金属-C 键合,从而促进了具有低反应能和低势垒的可行的 C-C 耦合。这些见解揭示了 CO 物质氢化在偶联步骤之前的重要作用,并可能为理解 CO2/CORR 中 C2+ 产物的产生提供理论视角。