当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sub‐Nanometer Porous Carbon Materials for High‐Performance Supercapacitors Using Carbon Dots as Self‐templated Pore‐Makers
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419219 Xi‐Rong Zhang, Tian‐Bing Song, Tian‐Le He, Qian‐Li Ma, Zhao‐Fan Wu, Yong‐Gang Wang, Huan‐Ming Xiong
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419219 Xi‐Rong Zhang, Tian‐Bing Song, Tian‐Le He, Qian‐Li Ma, Zhao‐Fan Wu, Yong‐Gang Wang, Huan‐Ming Xiong
Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3 ) displays outstanding capacitances (gravimetric 515.5 F g−1 , areal 5.16 F cm−2 , and volumetric 417.6 F cm−3 respectively at 1 A g−1 ) at the commercial‐level mass‐loading of 10 mg cm−2 . The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1 , as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1 ) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts.
中文翻译:
用于高性能超级电容器的亚纳米多孔碳材料,使用碳点作为自模板造孔器
可定制的多孔碳结构对于高性能电极材料至关重要,不同水平的孔隙参数的调制仍然是一个巨大的挑战。对于超级电容器,首选的碳材料应具有高比电容、良好的倍率性能、高密度、低自放电和高质量负载,这可以通过亚纳米孔 (0.5–1.0 nm) 来实现。在此,据报道,一种使用碳点 (CD) 作为自模板的新方法可以产生具有 0.64-0.80 nm 均匀孔径的多孔碳。因此,具有高堆积密度 (0.81 g cm-3) 的最佳样品在 10 mg cm-2 的商业级质量负载下显示出出色的电容(重量 515.5 F g-1、面积 5.16 F cm-2 和体积 417.6 F cm-3 在 1 A g-1 时)。组装的高负载对称超级电容器在 3500 W kg-1 时显示出 22.3 Wh kg-1 的高能量密度,以及在 1.4 V 的超宽电压范围内使用水系电解质时具有长循环稳定性(在 2 A g-1 下循环 10 000 次后保留率为 99.9%)水系电解质。这项工作提出了一种优选多孔碳的微孔形成策略,可应用于超级电容器、电池、过滤器、吸附剂和催化剂。
更新日期:2024-12-26
中文翻译:
用于高性能超级电容器的亚纳米多孔碳材料,使用碳点作为自模板造孔器
可定制的多孔碳结构对于高性能电极材料至关重要,不同水平的孔隙参数的调制仍然是一个巨大的挑战。对于超级电容器,首选的碳材料应具有高比电容、良好的倍率性能、高密度、低自放电和高质量负载,这可以通过亚纳米孔 (0.5–1.0 nm) 来实现。在此,据报道,一种使用碳点 (CD) 作为自模板的新方法可以产生具有 0.64-0.80 nm 均匀孔径的多孔碳。因此,具有高堆积密度 (0.81 g cm-3) 的最佳样品在 10 mg cm-2 的商业级质量负载下显示出出色的电容(重量 515.5 F g-1、面积 5.16 F cm-2 和体积 417.6 F cm-3 在 1 A g-1 时)。组装的高负载对称超级电容器在 3500 W kg-1 时显示出 22.3 Wh kg-1 的高能量密度,以及在 1.4 V 的超宽电压范围内使用水系电解质时具有长循环稳定性(在 2 A g-1 下循环 10 000 次后保留率为 99.9%)水系电解质。这项工作提出了一种优选多孔碳的微孔形成策略,可应用于超级电容器、电池、过滤器、吸附剂和催化剂。