当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Research and Progress in Mitigating Carbon Oxidation in Air Electrodes
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202417580 Jin‐Ge Fan, Jian‐Min Pan, Han Wang, Sheng Liu, Yi Zhan, Xingbin Yan
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202417580 Jin‐Ge Fan, Jian‐Min Pan, Han Wang, Sheng Liu, Yi Zhan, Xingbin Yan
Oxygen electrocatalysis plays a pivotal role in fuel cells and metal‐air batteries, which hold immense potential for energy conversion and storage systems due to their superior theoretical energy density, cost‐effectiveness, and safety profile. However, carbon‐based materials in air electrode face challenges stemming from the harsh oxidative environment of oxygen catalysis, leading to thermodynamic instability. This underscores the urgent necessity for the development of effective carbon anti‐oxidation strategies. This comprehensive review initially explores the complex mechanisms underlying the oxygen reduction/oxygen evolution reactions (ORR/OER) and the prevalent issue of carbon corrosion in carbon‐based materials. It then delves into diverse strategies aimed at mitigating catalyst corrosion through doped carbons, encompassing techniques such as graphitization, active site management, surface modification using functional groups, and corrosion resistance coating. Moreover, the review discusses methods to counteract carbon oxidation in catalyst supports, including the utilization of novel carbons, highly active catalysts to minimize oxidation, and the exploration of non‐carbon alternatives. Furthermore, the review also sheds light on protecting current collectors and conductive additives within the air electrode from corrosion. Ultimately, it outlines emerging challenges and opportunities for addressing carbon oxidation in air electrode, paving the way for enhanced performance and longevity in fuel cells and metal‐air batteries.
中文翻译:
减轻空气电极中碳氧化的研究与进展
氧电催化在燃料电池和金属空气电池中起着举足轻重的作用,由于其卓越的理论能量密度、成本效益和安全性,它们在能量转换和存储系统方面具有巨大的潜力。然而,空气电极中的碳基材料面临着来自氧催化的恶劣氧化环境的挑战,导致热力学不稳定。这凸显了开发有效的碳抗氧化策略的迫切必要性。本综述初步探讨了氧还原/析氧反应 (ORR/OER) 的复杂机制以及碳基材料中普遍存在的碳腐蚀问题。然后,它深入探讨了旨在通过掺杂碳减轻催化剂腐蚀的各种策略,包括石墨化、主动位点管理、使用官能团进行表面改性和耐腐蚀涂层等技术。此外,该综述讨论了抵消催化剂载体中碳氧化的方法,包括利用新型碳、高活性催化剂以最大限度地减少氧化,以及探索非碳替代品。此外,该审查还阐明了如何保护空气电极内的集流体和导电添加剂免受腐蚀。最终,它概述了解决空气电极中碳氧化的新挑战和机遇,为提高燃料电池和金属空气电池的性能和使用寿命铺平了道路。
更新日期:2024-12-26
中文翻译:
减轻空气电极中碳氧化的研究与进展
氧电催化在燃料电池和金属空气电池中起着举足轻重的作用,由于其卓越的理论能量密度、成本效益和安全性,它们在能量转换和存储系统方面具有巨大的潜力。然而,空气电极中的碳基材料面临着来自氧催化的恶劣氧化环境的挑战,导致热力学不稳定。这凸显了开发有效的碳抗氧化策略的迫切必要性。本综述初步探讨了氧还原/析氧反应 (ORR/OER) 的复杂机制以及碳基材料中普遍存在的碳腐蚀问题。然后,它深入探讨了旨在通过掺杂碳减轻催化剂腐蚀的各种策略,包括石墨化、主动位点管理、使用官能团进行表面改性和耐腐蚀涂层等技术。此外,该综述讨论了抵消催化剂载体中碳氧化的方法,包括利用新型碳、高活性催化剂以最大限度地减少氧化,以及探索非碳替代品。此外,该审查还阐明了如何保护空气电极内的集流体和导电添加剂免受腐蚀。最终,它概述了解决空气电极中碳氧化的新挑战和机遇,为提高燃料电池和金属空气电池的性能和使用寿命铺平了道路。