European Journal of Nuclear Medicine and Molecular Imaging ( IF 8.6 ) Pub Date : 2024-12-26 , DOI: 10.1007/s00259-024-07014-z Yapei Zhang, Yunxiu Qiu, Ali Bavandpour Karimi, Bryan Ronain Smith
Background
The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies.
Method
A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization.
Results
We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy.
Conclusion
The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
中文翻译:
系统评价: 光活性纳米载体用于成像和治疗的机制,包括受控药物递送
背景
用于靶向药物递送系统 (DDS) 的智能光激活纳米材料的设计引起了研究的广泛兴趣,部分原因是光能够以高空间和时间分辨率精确控制特定细胞或组织中药物的释放。有效的光触发 DDS 的开发涉及包括光分裂、光异构化、光聚合、光敏化、光热现象和光重排在内的机制,这些机制允许对紫外线 (UV)、可见光 (Vis) 和/或近红外 (NIR) 光做出反应。本文探讨了光响应小分子、聚合物和纳米载体的最新进展,详细介绍了它们在药物递送和/或成像中的潜在机制和效用。此外,它强调了光触发 DDS 开发中的关键挑战和未来前景,强调了这些系统彻底改变靶向治疗的潜力。
方法
使用 Google Scholar 作为主要数据库和信息来源进行系统的文献检索。我们使用以下关键词单独和相关组合检索了最近发表的文献(15 年内):光响应、纳米颗粒、药物释放、机制、光热、光敏化、光聚合、光裂解和光异构化。
结果
我们选择了 117 篇科学文章,在筛选标题和摘要后评估证据强度。我们发现六种机制 (光切割、光异构化、光聚合、光敏化、光热现象和光重排) 主要用于光触发药物释放,并相应地对我们的综述进行分类。偶氮苯/螺吡喃基衍生物和邻硝基苄基/香豆素衍生物通常用于光异构化和光切割药物递送,而自由基聚合和阳离子聚合包括光聚合的两种主要机制。一百二是用于光敏化的主要活性自由基氧,这是影响光动力疗法治疗效果的关键因素,但不会影响光热疗法的治疗效果。
结论
综合综述为生物医学应用中的光触发 DDS 提供了指导指南针。这个快速发展的领域有望为疾病诊断和治疗带来突破。