当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Gradient Ethylene/α-Olefin Copolymer Prepared via In Situ Copolymerization
Macromolecules ( IF 5.1 ) Pub Date : 2024-12-26 , DOI: 10.1021/acs.macromol.4c02122 Xinyi Li, Jianhua Wang, Quan Chen, Bo Liu
Macromolecules ( IF 5.1 ) Pub Date : 2024-12-26 , DOI: 10.1021/acs.macromol.4c02122 Xinyi Li, Jianhua Wang, Quan Chen, Bo Liu
Synthesis of gradient copolymers through coordination insertion copolymerization is an unmet goal since the prerequisite is not only the copolymerization being performed in a living manner but also the composition drift being sensitive to the change of comonomer concentration. Herein, these challenging issues to ethylene/1-hexene polymerization were simultaneously solved by carefully tuning the steric of the ortho-substituent of the amine bis(phenolate) moiety within the corresponding titanium complex. The titanium complex 1 catalyzed ethylene/1-hexene copolymerization to give gradient copolymers P1–P4 within a certain range of 1-hexene concentrations through in situ polymerization and block copolymer P5 through a sequential feeding strategy. The structure–property relationship between the phase structure and the mechanical property and electric breakdown voltage were elucidated. Compared to P4 containing a tiny crystalline phase, the gradient copolymer P3 with a large discrete crystalline phase shows a much higher electric breakdown voltage (209.6 kV/mm vs 146.6 kV/mm) and tensile strength (23.6 MPa vs 3.8 MPa). With the accumulation of crystalline phase in P2, the electric breakdown voltage slightly decreases to 199.7 kV/mm, but the tensile strength improves to 34.0 MPa, which are similar to those of block copolymer P5 (Eb = 183.7 kV/mm, σb = 32.8 MPa) and superior to those of P1 (Eb = 160.7 kV/mm, σb = 25.9 MPa) with continuous crystalline phase.
中文翻译:
通过原位共聚制备梯度乙烯/α-烯烃共聚物
通过配位插入共聚合成梯度共聚物是一个未实现的目标,因为前提条件不仅是以活生生的方式进行共聚,而且成分漂移对共聚单体浓度的变化敏感。在此,通过仔细调整相应钛配合物中胺双(酚酸酯)部分的邻位取代基的空间位位,同时解决了乙烯/1-己烯聚合的这些具有挑战性的问题。钛络合物 1 催化乙烯/1-己烯共聚,通过原位聚合在 1-己烯浓度的一定范围内得到梯度共聚物 P1-P4,并通过顺序进料策略得到嵌段共聚物 P5。阐明了相结构与机械性能和电击穿电压之间的结构-性能关系。与含有微小晶相的 P4 相比,具有大离散晶相的梯度共聚物 P3 显示出更高的击穿电压(209.6 kV/mm 对 146.6 kV/mm)和拉伸强度(23.6 MPa 对 3.8 MPa)。随着晶相在 P2 中的积累,电击穿电压略微降低至 199.7 kV/mm,但拉伸强度提高到 34.0 MPa,与嵌段共聚物 P5 (Eb = 183.7 kV/mm, σb = 32.8 MPa) 相近,优于连续晶相的 P1 (Eb = 160.7 kV/mm, σb = 25.9 MPa)。
更新日期:2024-12-26
中文翻译:
通过原位共聚制备梯度乙烯/α-烯烃共聚物
通过配位插入共聚合成梯度共聚物是一个未实现的目标,因为前提条件不仅是以活生生的方式进行共聚,而且成分漂移对共聚单体浓度的变化敏感。在此,通过仔细调整相应钛配合物中胺双(酚酸酯)部分的邻位取代基的空间位位,同时解决了乙烯/1-己烯聚合的这些具有挑战性的问题。钛络合物 1 催化乙烯/1-己烯共聚,通过原位聚合在 1-己烯浓度的一定范围内得到梯度共聚物 P1-P4,并通过顺序进料策略得到嵌段共聚物 P5。阐明了相结构与机械性能和电击穿电压之间的结构-性能关系。与含有微小晶相的 P4 相比,具有大离散晶相的梯度共聚物 P3 显示出更高的击穿电压(209.6 kV/mm 对 146.6 kV/mm)和拉伸强度(23.6 MPa 对 3.8 MPa)。随着晶相在 P2 中的积累,电击穿电压略微降低至 199.7 kV/mm,但拉伸强度提高到 34.0 MPa,与嵌段共聚物 P5 (Eb = 183.7 kV/mm, σb = 32.8 MPa) 相近,优于连续晶相的 P1 (Eb = 160.7 kV/mm, σb = 25.9 MPa)。