当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Radial basis function network using Lambert–Kaniadakis [formula omitted] function
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.cnsns.2024.108539
Hitalo Joseferson Batista Nascimento, Paulo Regis Menezes Sousa, José Leonardo Esteves da Silva

In this work the authors present a new class of radial basis functions (RBF) using functions from the κ-generalized Kaniadakis thermostatistics and the Lambert–Kaniadakis Wκ function, a recent generalization of the Lambert W function using the κ-exponential. Such functions are used to build neural networks of radial basis functions (RBFN). Two applications of these new RBFNs are described: In the first, we use such networks with κ=1/3 to train data that describe a time serie with additive noise. Second, we use the same RBFNs to numerically calculate the solution of Fredholm linear integral equations of the second kind.

中文翻译:


使用 Lambert-Kaniadakis [公式省略] 函数的径向基函数网络



在这项工作中,作者使用来自 κ 广义 Kaniadakis 热统计学和 Lambert-Kaniadakis Wκ 函数的函数提出了一类新的径向基函数 (RBF),这是最近使用 κ 指数对 Lambert W 函数的推广。此类函数用于构建径向基函数 (RBFN) 的神经网络。描述了这些新 RBFN 的两种应用:在第一个应用中,我们使用 κ=1/3 的这种网络来训练描述具有加性噪声的时间序列的数据。其次,我们使用相同的 RBFN 来数值计算第二种 Fredholm 线性积分方程的解。
更新日期:2024-12-17
down
wechat
bug