当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scalable Preparation and Precise Control of Carbon Materials via Molten Salt Liquid Seal Strategy in Air
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-25 , DOI: 10.1021/acssuschemeng.4c08670 Ming Liu, Huimin Li, Bin Zhang, Yanzi Lei, Luyao Luo, Hai Wang
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-12-25 , DOI: 10.1021/acssuschemeng.4c08670 Ming Liu, Huimin Li, Bin Zhang, Yanzi Lei, Luyao Luo, Hai Wang
Revealing the relations between the physical and chemical properties of carbon materials with defined composition and structure is an important topic. However, traditional organic carbon precursor-derived carbon materials lack effective fine-tuning methods due to the uncontrollable temperature changes. Herein, a novel strategy termed a “molten salt liquid seal” is introduced to address this issue. Impressively, the uppermost KBr layer in the provided configuration effectively contains the release of carbon organic precursor at low temperatures and forms a protective barrier at high temperatures, thereby inhibiting the oxidation of carbon materials in air. Furthermore, we propose a corresponding “liquid seal” mechanism by monitoring the temperature-dependent morphological evolution of molten salts and carbon materials. Remarkably, the heteroatoms, defects, etc., in the carbon material can be precisely controlled within the range of 100 °C and 0.5 h per interval. Moreover, the carbonization yield is close to or even higher than that of the conventional process under an Ar atmosphere. We also validate the advantages of the resultant carbon materials as anodes in sodium-ion batteries. This innovative approach not only minimizes the reliance of inert atmospheres but also enables the high-yield fabrication of carbon materials in air, significantly advancing the field toward more sustainable practices.
中文翻译:
通过空气中的熔盐液体密封策略对碳材料进行可扩展的制备和精确控制
揭示具有确定成分和结构的碳材料的物理和化学性质之间的关系是一个重要的课题。然而,传统的有机碳前驱体衍生碳材料由于温度变化不可控,缺乏有效的微调方法。在此,引入了一种称为“熔盐液封”的新策略来解决这个问题。令人印象深刻的是,所提供的配置中最上层的 KBr 层有效地包含了碳有机前驱体在低温下的释放,并在高温下形成保护屏障,从而抑制了碳材料在空气中的氧化。此外,我们通过监测熔盐和碳材料的温度依赖性形态演变,提出了相应的“液体密封”机制。值得注意的是,碳材料中的杂原子、缺陷等可以精确控制在 100 °C 和 0.5 h 的范围内。此外,在 Ar 气氛下,碳化产率接近甚至高于传统工艺。我们还验证了所得碳材料作为钠离子电池阳极的优势。这种创新方法不仅最大限度地减少了对惰性气氛的依赖,而且还能够在空气中高产量地制造碳材料,从而显着推动该领域朝着更可持续的实践发展。
更新日期:2024-12-26
中文翻译:
通过空气中的熔盐液体密封策略对碳材料进行可扩展的制备和精确控制
揭示具有确定成分和结构的碳材料的物理和化学性质之间的关系是一个重要的课题。然而,传统的有机碳前驱体衍生碳材料由于温度变化不可控,缺乏有效的微调方法。在此,引入了一种称为“熔盐液封”的新策略来解决这个问题。令人印象深刻的是,所提供的配置中最上层的 KBr 层有效地包含了碳有机前驱体在低温下的释放,并在高温下形成保护屏障,从而抑制了碳材料在空气中的氧化。此外,我们通过监测熔盐和碳材料的温度依赖性形态演变,提出了相应的“液体密封”机制。值得注意的是,碳材料中的杂原子、缺陷等可以精确控制在 100 °C 和 0.5 h 的范围内。此外,在 Ar 气氛下,碳化产率接近甚至高于传统工艺。我们还验证了所得碳材料作为钠离子电池阳极的优势。这种创新方法不仅最大限度地减少了对惰性气氛的依赖,而且还能够在空气中高产量地制造碳材料,从而显着推动该领域朝着更可持续的实践发展。