当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Porous g‐C3N4 Microspheres Wrapped by Garnet Nanoparticles Enable Solid Composite Electrolytes with Improved Ionic Conduction and Interfacial Stability
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419182 Wenjing Wang, Mengyang Jia, Zhijie Bi, Xiangxin Guo
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419182 Wenjing Wang, Mengyang Jia, Zhijie Bi, Xiangxin Guo
Solid composite electrolytes composed of poly(vinylidene fluoride) (PVDF) and Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) hold promise for realizing practically applied solid lithium batteries (SLBs) with high safety and energy density. However, they face the issues of the LLZTO agglomeration in polymers and the dehydrofluorination of PVDF at the anode interface. To overcome these issues, porous g ‐C3 N4 microspheres are wrapped homogeneously by LLZTO nanoparticles via the metal‐nitrogen bonding between Li atoms in LLZTO and N atoms in g ‐C3 N4 and then incorporated into the composite electrolytes. The achieved LLZTO network with 3D structures provides continuous and fast ionic transport channels inside electrolytes. Additionally, g ‐C3 N4 with abundant N can endow the construction of a stable solid electrolyte interface (SEI) consisting of rich Li3 N, separating PVDF from Li‐metal and suppressing the PVDF dehydrofluorination at the anode interface. Consequently, the obtained composite electrolytes with the ionic conductivity of 7.56 × 10−4 S cm−1 at 30 °C undergo stable stripping‐plating cycles over 2000 h. The SLBs using LiNi0.6 Co0.2 Mn0.2 O2 (NCM622) and LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) achieve superior cycle stability with the capacity retention of 88.65% for 300 cycles and 88.22% for 150 cycles at 0.5 C, respectively. This work provides a universal strategy for constructing PVDF‐based composite electrolytes with high conductivity and interface compatibility.
中文翻译:
石榴石纳米颗粒包裹的多孔 g-C3N4 微球使固体复合电解质具有更好的离子传导和界面稳定性
由聚偏二氟乙烯 (PVDF) 和 Li6.4La3Zr1.4Ta0.6O12 (LLZTO) 组成的固体复合电解质有望实现具有高安全性和能量密度的固体锂电池 (SLB) 的实际应用。然而,它们面临着聚合物中 LLZTO 团聚和 PVDF 在阳极界面处脱氢氟化的问题。为了克服这些问题,多孔 g-C3N4 微球通过 LLZTO 中的 Li 原子和 g-C3N4 中的 N 原子之间的金属-氮键被 LLZTO 纳米颗粒均匀包裹,然后掺入复合电解质中。实现的具有 3D 结构的 LLZTO 网络在电解质内部提供了连续快速的离子传输通道。此外,具有丰富 N 的 g-C3N4 可以构建一个由丰富的 Li3N 组成的稳定的固体电解质界面 (SEI),将 PVDF 与锂金属分离并抑制阳极界面处的 PVDF 脱氢氟化。因此,在 30 °C 下离子电导率为 7.56 × 10-4 S cm-1 的复合电解质在 2000 小时内经历了稳定的剥离-电镀循环。使用 LiNi0.6Co0.2Mn0.2O2 (NCM622) 和 LiNi0.8Co0.1Mn0.1O2 (NCM811) 的 SLBs 在 0.5 C 下实现了优异的循环稳定性,在 300 次循环中容量保持率分别为 88.65% 和 150 次循环 88.22%。这项工作为构建具有高导电性和界面兼容性的基于 PVDF 的复合电解质提供了一种通用策略。
更新日期:2024-12-26
中文翻译:
石榴石纳米颗粒包裹的多孔 g-C3N4 微球使固体复合电解质具有更好的离子传导和界面稳定性
由聚偏二氟乙烯 (PVDF) 和 Li6.4La3Zr1.4Ta0.6O12 (LLZTO) 组成的固体复合电解质有望实现具有高安全性和能量密度的固体锂电池 (SLB) 的实际应用。然而,它们面临着聚合物中 LLZTO 团聚和 PVDF 在阳极界面处脱氢氟化的问题。为了克服这些问题,多孔 g-C3N4 微球通过 LLZTO 中的 Li 原子和 g-C3N4 中的 N 原子之间的金属-氮键被 LLZTO 纳米颗粒均匀包裹,然后掺入复合电解质中。实现的具有 3D 结构的 LLZTO 网络在电解质内部提供了连续快速的离子传输通道。此外,具有丰富 N 的 g-C3N4 可以构建一个由丰富的 Li3N 组成的稳定的固体电解质界面 (SEI),将 PVDF 与锂金属分离并抑制阳极界面处的 PVDF 脱氢氟化。因此,在 30 °C 下离子电导率为 7.56 × 10-4 S cm-1 的复合电解质在 2000 小时内经历了稳定的剥离-电镀循环。使用 LiNi0.6Co0.2Mn0.2O2 (NCM622) 和 LiNi0.8Co0.1Mn0.1O2 (NCM811) 的 SLBs 在 0.5 C 下实现了优异的循环稳定性,在 300 次循环中容量保持率分别为 88.65% 和 150 次循环 88.22%。这项工作为构建具有高导电性和界面兼容性的基于 PVDF 的复合电解质提供了一种通用策略。