当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vacancy Engineering on MnSe Cathode Enables High‐Rate and Stable Zinc‐Ion Storage
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419720 Wenping Zhong, Rui Zhao, Yirong Zhu, Yuting Xu, Wenhao Chen, Chao Peng
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-26 , DOI: 10.1002/adfm.202419720 Wenping Zhong, Rui Zhao, Yirong Zhu, Yuting Xu, Wenhao Chen, Chao Peng
Manganese selenide (MnSe), as a newly emerged manganese‐based chalcogenide, has recently been considered as a potential cathode for aqueous Zn‐based energy storage due to its many merits. Nevertheless, its unsatisfactory kinetic performance and cycling stability, along with its controversial energy storage mechanism, hinder its commercial application. Herein, the MnSe microspheres with Se‐rich vacancies (VSe ‐MnSe) are synthesized, and employed as a cathode for Zn‐ion batteries/capacitors (ZIBs/ZICs) for the first time. Density functional theory (DFT) calculations and kinetic analyses illustrate that vacancy engineering of MnSe enhances the active sites, improves the electronic conductivity and ion transport, and reduces the adsorption energy and diffusion energy barriers of H+ and Zn2+ , endowing the VSe ‐MnSe cathode of ZIBs with significantly enhanced specific capacity, rate capability, and cycling stability. Interestingly, ex situ tests confirm the stable existence of VSe ‐MnSe during the whole charge/discharge process and store energy with the first H+ insertion and subsequent H+ /Zn2+ co‐insertion. More encouragingly, the VSe ‐MnSe//porous carbon (PC) ZICs exhibit an ultrahigh energy density (178.0 Wh kg−1 ), a high power density (10 kW kg−1 ), and eminent cyclic stability (up to 10000 cycles). This research offers an efficient strategy for designing and developing high‐performance manganese‐based chalcogenides and sheds new insights into their energy storage mechanisms.
中文翻译:
MnSe 阴极的空位工程可实现高速和稳定的锌离子存储
硒化锰 (MnSe) 作为一种新兴的锰基硫属化物,由于其许多优点,最近被认为是水性锌基储能的潜在阴极。然而,其不尽如人意的动力学性能和循环稳定性,以及其备受争议的储能机制,阻碍了其商业应用。在此,合成了具有富硒空位 (VSe‐MnSe) 的 MnSe 微球,并首次用作锌离子电池/电容器 (ZIBs/ZICs) 的阴极。密度泛函理论 (DFT) 计算和动力学分析表明,MnSe 的空位工程增强了活性位点,提高了电子电导率和离子传输,降低了 H+ 和 Zn2+ 的吸附能和扩散能垒,使 ZIBs 的 VSe-MnSe 阴极具有显著增强的比容量、倍率能力和循环稳定性。有趣的是,非原位测试证实了 VSe-MnSe 在整个充电/放电过程中的稳定存在,并在第一次 H+ 插入和随后的 H+/Zn2+ 共插入时储存能量。更令人鼓舞的是,VSe-MnSe//多孔碳 (PC) ZIC 表现出超高能量密度 (178.0 Wh kg-1)、高功率密度 (10 kW kg-1) 和出色的循环稳定性(高达 10000 次循环)。这项研究为设计和开发高性能锰基硫系元素提供了一种有效的策略,并为它们的储能机制提供了新的见解。
更新日期:2024-12-26
中文翻译:
MnSe 阴极的空位工程可实现高速和稳定的锌离子存储
硒化锰 (MnSe) 作为一种新兴的锰基硫属化物,由于其许多优点,最近被认为是水性锌基储能的潜在阴极。然而,其不尽如人意的动力学性能和循环稳定性,以及其备受争议的储能机制,阻碍了其商业应用。在此,合成了具有富硒空位 (VSe‐MnSe) 的 MnSe 微球,并首次用作锌离子电池/电容器 (ZIBs/ZICs) 的阴极。密度泛函理论 (DFT) 计算和动力学分析表明,MnSe 的空位工程增强了活性位点,提高了电子电导率和离子传输,降低了 H+ 和 Zn2+ 的吸附能和扩散能垒,使 ZIBs 的 VSe-MnSe 阴极具有显著增强的比容量、倍率能力和循环稳定性。有趣的是,非原位测试证实了 VSe-MnSe 在整个充电/放电过程中的稳定存在,并在第一次 H+ 插入和随后的 H+/Zn2+ 共插入时储存能量。更令人鼓舞的是,VSe-MnSe//多孔碳 (PC) ZIC 表现出超高能量密度 (178.0 Wh kg-1)、高功率密度 (10 kW kg-1) 和出色的循环稳定性(高达 10000 次循环)。这项研究为设计和开发高性能锰基硫系元素提供了一种有效的策略,并为它们的储能机制提供了新的见解。