当前位置:
X-MOL 学术
›
Biophys. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revealing an origin of temperature-dependent structural change in intrinsically disordered protein.
Biophysical Journal ( IF 3.2 ) Pub Date : 2024-12-23 , DOI: 10.1016/j.bpj.2024.12.022 Rintaro Inoue,Takashi Oda,Hiroshi Nakagawa,Taiki Tominaga,Takahisa Ikegami,Tsuyoshi Konuma,Hiroki Iwase,Yukinobu Kawakita,Mamoru Sato,Masaaki Sugiyama
Biophysical Journal ( IF 3.2 ) Pub Date : 2024-12-23 , DOI: 10.1016/j.bpj.2024.12.022 Rintaro Inoue,Takashi Oda,Hiroshi Nakagawa,Taiki Tominaga,Takahisa Ikegami,Tsuyoshi Konuma,Hiroki Iwase,Yukinobu Kawakita,Mamoru Sato,Masaaki Sugiyama
Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and dynamics of the intrinsically disordered region of Hef, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range. Nuclear magnetic resonance (NMR) studies revealed the absence of promotion of α-helix. As a result, SAXS, CD, and NMR data strongly suggest that these temperature-dependent structural changes were primarily due to a reduction in the content of the polyproline II (PPII) helix. Moreover, quasielastic neutron scattering studies revealed a slight change in the activation energy in a similar temperature range. Considering the concept of glass transition, it is posited that dynamical cooperativity between the PPII helix and water may play a significant role in these structural changes. The findings suggest that internal dynamics are crucial for regulating the structure of IDPs, highlighting the importance of considering dynamical cooperativity in future studies of protein behavior under varying temperature conditions.
中文翻译:
揭示了固有无序蛋白中温度依赖性结构变化的起源。
固有无序蛋白 (IDP) 显示受外部条件变化刺激的结构变化。本研究旨在使用综合方法揭示典型的 IDP 之一 Hef 固有无序区域的结构和动力学的温度依赖性。小角 X 射线散射 (SAXS) 和圆二色性 (CD) 研究表明,在 313-323 K 之前,222 nm 处的回转半径和椭圆度保持不变,随后在此温度范围以上下降。核磁共振 (NMR) 研究显示 α-螺旋没有促进。因此,SAXS、CD 和 NMR 数据强烈表明,这些与温度相关的结构变化主要是由于聚脯氨酸 II (PPII) 螺旋含量的减少。此外,准弹性中子散射研究表明,在相似的温度范围内,活化能的变化很小。考虑到玻璃化转变的概念,假设 PPII 螺旋和水之间的动力学协同性可能在这些结构变化中起重要作用。研究结果表明,内部动力学对于调节 IDP 的结构至关重要,突出了在未来研究不同温度条件下蛋白质行为时考虑动力学协同性的重要性。
更新日期:2024-12-23
中文翻译:
揭示了固有无序蛋白中温度依赖性结构变化的起源。
固有无序蛋白 (IDP) 显示受外部条件变化刺激的结构变化。本研究旨在使用综合方法揭示典型的 IDP 之一 Hef 固有无序区域的结构和动力学的温度依赖性。小角 X 射线散射 (SAXS) 和圆二色性 (CD) 研究表明,在 313-323 K 之前,222 nm 处的回转半径和椭圆度保持不变,随后在此温度范围以上下降。核磁共振 (NMR) 研究显示 α-螺旋没有促进。因此,SAXS、CD 和 NMR 数据强烈表明,这些与温度相关的结构变化主要是由于聚脯氨酸 II (PPII) 螺旋含量的减少。此外,准弹性中子散射研究表明,在相似的温度范围内,活化能的变化很小。考虑到玻璃化转变的概念,假设 PPII 螺旋和水之间的动力学协同性可能在这些结构变化中起重要作用。研究结果表明,内部动力学对于调节 IDP 的结构至关重要,突出了在未来研究不同温度条件下蛋白质行为时考虑动力学协同性的重要性。