当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A novel fluid solid loosely coupled computational approach for precise and fast prediction of indoor air conditioner cooling
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.enbuild.2024.115192 Junjian Wang, Banghua Zhao, Rupu Huang, Jiumin Xiao, Sujun Dong
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-17 , DOI: 10.1016/j.enbuild.2024.115192 Junjian Wang, Banghua Zhao, Rupu Huang, Jiumin Xiao, Sujun Dong
Obtaining precise distribution of airflow and temperature during indoor air conditioner ventilation and heat transfer is a pre-condition for adjusting thermal comfort. Numerical simulations, as a core tool for predicting environmental change, face increasingly stringent precision requirements. Traditional methodologies struggle to simultaneously achieve both fast and precise calculations. Consequently, this study introduces an innovative loosely coupled computational approach to address fluid–solid conjugate heat transfer. An integrated three-dimensional heat transfer model has been developed for the air conditioning cooling characteristics laboratory, which quantifies the impact of air buoyancy on thermal stratification phenomena. The model is meticulously compared with experimental results to discern factors impacting simulation precision. The findings underscore the substantial impact of air buoyancy on the room’s flow field, temperature distribution, and stratification phenomena. Employing the real time varying temperature monitoring value as the vent boundary significantly minimizes resultant errors, and the error will not exceed 0.50 K. The vent velocity vertical division exerts minimal impact on the mean temperature, but it notably influences temperature stratification outcomes. Notably, the adoption of the loosely coupled computational strategy dramatically slashes computational time of the cooling process to 1/23 of the tightly coupled method, while maintaining a high simulation precision. This study injects new vitality into the transient simulation calculation of indoor thermal environment and provides strong support for the optimized design of air conditioner airflow organization.
中文翻译:
一种新型的流体固体松散耦合计算方法,用于精确、快速预测室内空调制冷
在室内空调通风和传热过程中获得气流和温度的精确分布是调整热舒适度的前提条件。数值模拟作为预测环境变化的核心工具,面临着越来越严格的精度要求。传统方法难以同时实现快速和精确的计算。因此,本研究引入了一种创新的松散耦合计算方法来解决流-固共轭传热问题。为空调冷却特性实验室开发了一个集成的三维传热模型,该模型量化了空气浮力对热分层现象的影响。该模型与实验结果进行了仔细的比较,以识别影响仿真精度的因素。研究结果强调了空气浮力对房间流场、温度分布和分层现象的重大影响。采用实时变化温度监测值作为通风口边界,可显著减少产生的误差,误差不会超过 0.50 K。喷口速度垂直划分对平均温度的影响最小,但它显着影响温度分层结果。值得注意的是,采用松散耦合的计算策略将冷却过程的计算时间大大缩短到紧耦合方法的 1/23,同时保持了较高的仿真精度。本研究为室内热环境瞬态仿真计算注入了新的活力,为空调气流组织的优化设计提供了有力支撑。
更新日期:2024-12-17
中文翻译:
一种新型的流体固体松散耦合计算方法,用于精确、快速预测室内空调制冷
在室内空调通风和传热过程中获得气流和温度的精确分布是调整热舒适度的前提条件。数值模拟作为预测环境变化的核心工具,面临着越来越严格的精度要求。传统方法难以同时实现快速和精确的计算。因此,本研究引入了一种创新的松散耦合计算方法来解决流-固共轭传热问题。为空调冷却特性实验室开发了一个集成的三维传热模型,该模型量化了空气浮力对热分层现象的影响。该模型与实验结果进行了仔细的比较,以识别影响仿真精度的因素。研究结果强调了空气浮力对房间流场、温度分布和分层现象的重大影响。采用实时变化温度监测值作为通风口边界,可显著减少产生的误差,误差不会超过 0.50 K。喷口速度垂直划分对平均温度的影响最小,但它显着影响温度分层结果。值得注意的是,采用松散耦合的计算策略将冷却过程的计算时间大大缩短到紧耦合方法的 1/23,同时保持了较高的仿真精度。本研究为室内热环境瞬态仿真计算注入了新的活力,为空调气流组织的优化设计提供了有力支撑。