当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metal Forging Inspired Chain-Combing Processing Strategy for Engineering Plastic’s Properties Enhancement
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-12-24 , DOI: 10.1021/acs.iecr.4c02984 Junyu Yang, Hang Li, Wei Huang, Nan Wang, Guangyuan Zhou, Mingbin Gao, Jiang Wei Zhang, Haiyang Li
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-12-24 , DOI: 10.1021/acs.iecr.4c02984 Junyu Yang, Hang Li, Wei Huang, Nan Wang, Guangyuan Zhou, Mingbin Gao, Jiang Wei Zhang, Haiyang Li
This study presents a highly efficient Surface Mechanical Treatment (SMT) inspired by metal forging principles developed to significantly enhance the mechanical properties and surface durability of engineering plastics, including PA66, PEEK, POM, and PPS. Offering a sustainable and energy-efficient alternative to conventional polymer processing techniques, SMT achieves remarkable property enhancements. For example, when applied to PA66, SMT improved Young’s Modulus by 88.39% and Ultimate Tensile Strength (UTS) by 28.37%, while the surface layer demonstrated a 10-fold increase in modulus to approximately 10 GPa, accompanied by a 43.29% rise in Vickers Hardness and a 10% improvement in crystallinity. The methodology combines the application of compressive and shear forces via a custom-designed device with advanced molecular dynamics simulations, including force field molecular dynamics (FFMD) and ab initio molecular dynamics (AIMD). These simulations revealed a unique “chain-combing” mechanism, aligning polymer chains and reinforcing hydrogen bonding at the molecular level. Comprehensive structural analyses, such as SAXS and WAXS, further confirmed these findings by demonstrating enhanced crystallinity and the development of a pronounced surface-to-bulk property gradient. This research underscores the transformative potential of SMT as a surface-specific modification strategy, enabling substantial macroscopic property improvements through localized molecular restructuring. The findings open new avenues for processing engineering plastics, offering a pathway to developing more durable and efficient materials for industrial applications.
中文翻译:
金属锻造启发 工程塑料性能提升的梳链加工策略
本研究提出了一种高效的表面机械处理 (SMT),其灵感来自金属锻造原理,旨在显着提高工程塑料(包括 PA66、PEEK、POM 和 PPS)的机械性能和表面耐久性。SMT 为传统聚合物加工技术提供了一种可持续且节能的替代方案,实现了显着的性能增强。例如,当应用于 PA66 时,SMT 将杨氏模量提高了 88.39%,极限拉伸强度 (UTS) 提高了 28.37%,而表层的模量增加了 10 倍,达到约 10 GPa,维氏硬度提高了 43.29%,结晶度提高了 10%。该方法将通过定制设计的设备施加压缩力和剪切力与先进的分子动力学模拟相结合,包括力场分子动力学 (FFMD) 和从头计算分子动力学 (AIMD)。这些模拟揭示了一种独特的“链梳理”机制,在分子水平上对齐聚合物链并加强氢键。全面的结构分析,如 SAXS 和 WAXS,通过证明增强的结晶度和明显的表面到体积性能梯度的发展,进一步证实了这些发现。这项研究强调了 SMT 作为表面特异性改性策略的变革潜力,通过局部分子重组实现实质性的宏观性能改善。这些发现为加工工程塑料开辟了新的途径,为开发更耐用、更高效的工业应用材料提供了途径。
更新日期:2024-12-24
中文翻译:
金属锻造启发 工程塑料性能提升的梳链加工策略
本研究提出了一种高效的表面机械处理 (SMT),其灵感来自金属锻造原理,旨在显着提高工程塑料(包括 PA66、PEEK、POM 和 PPS)的机械性能和表面耐久性。SMT 为传统聚合物加工技术提供了一种可持续且节能的替代方案,实现了显着的性能增强。例如,当应用于 PA66 时,SMT 将杨氏模量提高了 88.39%,极限拉伸强度 (UTS) 提高了 28.37%,而表层的模量增加了 10 倍,达到约 10 GPa,维氏硬度提高了 43.29%,结晶度提高了 10%。该方法将通过定制设计的设备施加压缩力和剪切力与先进的分子动力学模拟相结合,包括力场分子动力学 (FFMD) 和从头计算分子动力学 (AIMD)。这些模拟揭示了一种独特的“链梳理”机制,在分子水平上对齐聚合物链并加强氢键。全面的结构分析,如 SAXS 和 WAXS,通过证明增强的结晶度和明显的表面到体积性能梯度的发展,进一步证实了这些发现。这项研究强调了 SMT 作为表面特异性改性策略的变革潜力,通过局部分子重组实现实质性的宏观性能改善。这些发现为加工工程塑料开辟了新的途径,为开发更耐用、更高效的工业应用材料提供了途径。