当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-24 , DOI: 10.1002/adfm.202418721 Yinglai Hou, Zhizhi Sheng, Mengchuang Zhang, Kaifa Lin, Jie Kong, Xuetong Zhang
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-12-24 , DOI: 10.1002/adfm.202418721 Yinglai Hou, Zhizhi Sheng, Mengchuang Zhang, Kaifa Lin, Jie Kong, Xuetong Zhang
Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass transfer behavior. It is realized by introducing multiphase co‐separation in a sol‐gel transition process of aramid nanofibers/polyvinylpyrrolidone/carbon nanotubes followed by subsequent freeze‐drying and carbonization. The resulting HPCCA possesses a high volumetric electrochemically accessible surface area (3.27 × 107 m−1 ) and excellent mass transfer efficiency, 2–3 times higher permeability than commercial Toray carbon paper and 9.86 times higher than bare aerogel. An all‐vanadium single cell with HPCCAs as electrodes possesses a high energy efficiency of 83.18% under the current density of 100 mA cm−2 , which is 10–31% higher than most of the state‐of‐the‐art carbon electrode materials including commercial carbon papers. In addition, the cell with HPCCAs shows outstanding long‐term stability up to 1000 cycles. Notably, HPCCAs are applicable to more flow battery systems, such as iron/chromium (Fe/Cr), iron/vanadium (Fe/V), zinc/bromine (Zn/Br), vanadium/methylene blue (V/MB), sodium salt of flavin mononucleotide/potassium ferrocyanide (FMN‐Na/K4 [Fe(CN)6 ]), and methyl viologen/4‐hydroxy‐2,2,6,6‐tetramethyl‐piperidin‐1‐oxyl (MV/4‐HO‐TEMPO). This work offers a new chemistry paradigm for developing advanced nanoporous aerogel materials and paves the way toward highly efficient flow electrochemical devices.
中文翻译:
用于高效流通池的分层多孔碳胶体气凝胶
具有高活性面积的电极通常会受到流动电化学设备中离子传输动力学的限制。在此,多级多孔碳胶体气凝胶 (HPCCA) 由多尺度孔隙构成,以满足高活性区域和高效传质行为之间的权衡。它是通过在芳纶纳米纤维/聚乙烯吡咯烷酮/碳纳米管的溶胶-凝胶过渡过程中引入多相共分离,然后进行随后的冷冻干燥和碳化来实现的。所得 HPCCA 具有高体积电化学可及表面积 (3.27 × 107 m-1) 和出色的传质效率,渗透性比商用东丽碳纸高 2-3 倍,比裸气凝胶高 9.86 倍。以 HPCCA 为电极的全钒单电池在 100 mA cm-2 的电流密度下具有 83.18% 的高能效,比大多数最先进的碳电极材料(包括商业碳纸)高 10-31%。此外,带有 HPCCA 的电池在高达 1000 次循环中表现出出色的长期稳定性。值得注意的是,HPCCA 适用于更多的液流电池系统,例如铁/铬 (Fe/Cr)、铁/钒 (Fe/V)、锌/溴 (Zn/Br)、钒/亚甲蓝 (V/MB)、黄素单核苷酸/亚铁氰化钾钠盐 (FMN-Na/K4[Fe(CN)6]) 和甲基紫精/4-羟基-2,2,6,6-四甲基-哌啶-1-氧基 (MV/4-HO-TEMPO)。这项工作为开发先进的纳米多孔气凝胶材料提供了一种新的化学范式,并为高效流动电化学器件铺平了道路。
更新日期:2024-12-24
中文翻译:
用于高效流通池的分层多孔碳胶体气凝胶
具有高活性面积的电极通常会受到流动电化学设备中离子传输动力学的限制。在此,多级多孔碳胶体气凝胶 (HPCCA) 由多尺度孔隙构成,以满足高活性区域和高效传质行为之间的权衡。它是通过在芳纶纳米纤维/聚乙烯吡咯烷酮/碳纳米管的溶胶-凝胶过渡过程中引入多相共分离,然后进行随后的冷冻干燥和碳化来实现的。所得 HPCCA 具有高体积电化学可及表面积 (3.27 × 107 m-1) 和出色的传质效率,渗透性比商用东丽碳纸高 2-3 倍,比裸气凝胶高 9.86 倍。以 HPCCA 为电极的全钒单电池在 100 mA cm-2 的电流密度下具有 83.18% 的高能效,比大多数最先进的碳电极材料(包括商业碳纸)高 10-31%。此外,带有 HPCCA 的电池在高达 1000 次循环中表现出出色的长期稳定性。值得注意的是,HPCCA 适用于更多的液流电池系统,例如铁/铬 (Fe/Cr)、铁/钒 (Fe/V)、锌/溴 (Zn/Br)、钒/亚甲蓝 (V/MB)、黄素单核苷酸/亚铁氰化钾钠盐 (FMN-Na/K4[Fe(CN)6]) 和甲基紫精/4-羟基-2,2,6,6-四甲基-哌啶-1-氧基 (MV/4-HO-TEMPO)。这项工作为开发先进的纳米多孔气凝胶材料提供了一种新的化学范式,并为高效流动电化学器件铺平了道路。