当前位置:
X-MOL 学术
›
J. Build. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Geometrical design optimization of foamcrete composite roof panel using thermal simulation
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.jobe.2024.111581 Ezzat Shah Barakzai, Farnaz Batool, Abdul Jabbar Sangi
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-12-13 , DOI: 10.1016/j.jobe.2024.111581 Ezzat Shah Barakzai, Farnaz Batool, Abdul Jabbar Sangi
In response to rapid urbanization and the intensifying energy crisis, the building sector necessitates sustainable and energy-efficient construction practices. Particularly, buildings account for a significant portion of global energy consumption dedicated to heating and cooling. This research investigates the optimization of roof panel design for enhanced insulation properties through thermal simulation. The focus is on optimizing the geometry and the density of foamcrete employed as insulating material. Specifically, two foamcrete densities namely 400 kg/m³ and 800 kg/m³ were used across circular, rectangular, and box with depth of panel considered 152 mm (6 in) and 203 mm (8 in) respectively. In numerical simulation twelve concrete composite roof panels filled with the foamcrete, six hollow and six solids made up of entirely normal concrete or foamcrete were included in the analysis. The results for solid panels indicated a temperature drop of 5 °C between the 203 mm thick panel and the 152 mm thick panel. In contrast, the hollow panels exhibited a temperature decrease of 1 °C for the 203 mm thick panel and 4 °C for the 152 mm thick panel. Among composite panels, the box composite panel with 203 mm depth and 400 kg/m³ density proved to be the optimum design, reducing the temperature by 7 °C and 8 °C compared to box hollow and solid panels. In addition, it was found that the foamcrete densities mainly 800 kg/m³ and 400 kg/m³ had a minimal impact on temperature variation. With reductions ranging from negligible in circular composite panels to a maximum of 2 °C in the box composite panel with 152 mm thickness.
中文翻译:
基于热仿真的泡沫混凝土复合屋面板几何设计优化
为了应对快速的城市化和日益加剧的能源危机,建筑行业需要可持续和节能的建筑实践。特别是,建筑物占全球供暖和制冷能源消耗的很大一部分。本研究调查了通过热仿真优化屋顶板设计以增强隔热性能的方法。重点是优化用作保温材料的泡沫混凝土的几何形状和密度。具体来说,圆形、矩形和盒子使用了两种泡沫混凝土密度,即 400 kg/m³ 和 800 kg/m³,面板深度分别为 152 毫米(6 英寸)和 203 毫米(8 英寸)。在数值模拟中,12 块填充有泡沫混凝土的混凝土组合屋面板,6 块空心屋面板和 6 块由完全普通的混凝土或泡沫混凝土组成的实体板包含在分析中。实心板的结果表明,203 mm 厚的板和 152 mm 厚的板之间的温度下降了 5 °C。相比之下,203 mm 厚的面板和 4 mm 厚的面板的温度分别降低了 203 °C 和 152 °C。在复合板中,深度为 203 mm、密度为 400 kg/m³ 的箱形复合板被证明是最佳设计,与箱形空心板和实心板相比,温度降低了 7 °C 和 8 °C。此外,还发现泡沫混凝土密度(主要是 800 kg/m³ 和 400 kg/m³)对温度变化的影响最小。降幅范围从圆形复合板的可忽略不计到厚度为 152 mm 的箱形复合板的最高 2 °C。
更新日期:2024-12-13
中文翻译:
基于热仿真的泡沫混凝土复合屋面板几何设计优化
为了应对快速的城市化和日益加剧的能源危机,建筑行业需要可持续和节能的建筑实践。特别是,建筑物占全球供暖和制冷能源消耗的很大一部分。本研究调查了通过热仿真优化屋顶板设计以增强隔热性能的方法。重点是优化用作保温材料的泡沫混凝土的几何形状和密度。具体来说,圆形、矩形和盒子使用了两种泡沫混凝土密度,即 400 kg/m³ 和 800 kg/m³,面板深度分别为 152 毫米(6 英寸)和 203 毫米(8 英寸)。在数值模拟中,12 块填充有泡沫混凝土的混凝土组合屋面板,6 块空心屋面板和 6 块由完全普通的混凝土或泡沫混凝土组成的实体板包含在分析中。实心板的结果表明,203 mm 厚的板和 152 mm 厚的板之间的温度下降了 5 °C。相比之下,203 mm 厚的面板和 4 mm 厚的面板的温度分别降低了 203 °C 和 152 °C。在复合板中,深度为 203 mm、密度为 400 kg/m³ 的箱形复合板被证明是最佳设计,与箱形空心板和实心板相比,温度降低了 7 °C 和 8 °C。此外,还发现泡沫混凝土密度(主要是 800 kg/m³ 和 400 kg/m³)对温度变化的影响最小。降幅范围从圆形复合板的可忽略不计到厚度为 152 mm 的箱形复合板的最高 2 °C。